Trinca, A.; Verdone, N.; Özgün, Ö.; Ma, Y.; Filho, I.; Raabe, D.; Vilardi, G.: Sustainable ironmaking from low-grade iron ores: A kinetic study on thermal decomposition and reduction of iron (II) oxalate. Journal of Environmental Chemical Engineering 13 (6), 119573 (2025)
Dong, X.; Wei, S.; Tehranchi, A.; Saksena, A.; Ponge, D.; Sun, B.; Raabe, D.: The dual role of boron on hydrogen embrittlement: example of interface-related hydrogen effects in an austenite-ferrite two-phase lightweight steel. Acta Materialia 299, 121458 (2025)
Büyükuslu, Ö.; Yang, F.; Raabe, D.; To Baben, M.; Ravensburg, A.: Using Thermodynamics and Microstructure to Mitigate Overfitting in Pellet Reduction Models. steel research international, 2500263 (2025)
Pauna, H.; Souza Filho, I. R.; Kulse, M.; Jovičević-Klug, M.; Springer, H.; Huttula, M.; Fabritius, T.; Raabe, D.: In Situ Observation of Sustainable Hematite-Magnetite-Wustite-Iron Hydrogen Plasma Reduction. Metallurgical and Materials Transactions B 56 (4), pp. 3938 - 3949 (2025)
Ratzker, B.; Ruffino, M.; Shankar, S.; Raabe, D.; Ma, Y.: Elucidating the microstructure evolution during hydrogen-based direct reduction via a case study of single crystal hematite. Acta Materialia 294, 121174 (2025)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.