Sandim, M. J. R.; Stamopoulos, D.; Aristomenopolou, E.; Zaefferer, S.; Raabe, D.; Awaji, S.; Watanabe, K.: Grain structure and irreversibility line of a bronze route CuNb reinforced Nb3Sn multifilamentary wire. Superconductivity Centennial Conference, The Hague, The Netherlands (2011)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Ab initio study of nano-precipitate nucleation and growth in ferritic steels. Psi-k/CECAM/CCP9 Biennial Graduate School in Electronic-Structure Methods, Oxford, UK (2011)
Wu, X.; Erbe, A.; Fabritius, H. O.; Raabe, D.: Ultrastructural Origins of Optical Properties in the Exoskeletons of Beetles. 2011 MRS Fall Meeting, Boston, MA, USA (2011)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Ab initio study of nano-precipitate nucleation and growth in ferritic steels. Materials Discovery by Scale-Bridging High-Throughput Experimentation and Modelling, Ruhr-Universität Bochum, Bochum, Germany (2010)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Ab initio and kinetic Monte-Carlo study of nano-precipitate nucleation and growth in ferritic steels. Materials Discovery by Scale-Bridging High-Throughput Experimentation and Modelling, Bochum, Germany (2010)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Kinetic Monte Carlo and ab initio study of nano-precipitates and growth in ferritic steels. Ab Initio Description of Iron and Steel: Mechanical Properties, Tegernsee, Germany (2010)
Wu, X.; Erbe, A.; Fabritius, H.; Raabe, D.: Structure of the 3D-Photonic Crystals in the Multi-Colored Scales of the Weevil Entimus imperialis (Curculionidae). Ninth International Conference on Photonic and Electromagnetic Crystal Structures (PECS-IX 2010), Granada, Spain (2010)
Friák, M.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Identification of fundamental materials-design limits in ultra light-weight Mg–Li alloys via quantum-mechanical calculations. Materials Science and Engineering 2010, Darmstadt, Germany (2010)
Dmitrieva, O.; Ponge, D.; Millán, J.; Choi, P.; Raabe, D.: Study of local chemical gradients in advanced precipitation hardened TRIP steel. 52nd International Field Emission Symposium IFES 2010, Sydney, Australia (2010)
Huemer, K.; Karsten, S.; Balusundaram, K.; Raabe, D.; Hild, S.; Fabritius, H.: Structural organization and mineral distribution in load-bearing exoskeleton parts of the edible crab Cancer pagurus. DPG Frühjahrstagung 2010, Regensburg, Germany (2010)
Fabritius, H.; Karsten, E. S.; Balasundaram, K.; Hild, S.; Huemer, K.; Raabe, D.: Influence of Structural Organization and Mineral Distribution on the Local Mechanical Properties of Mineralized Cuticle from the Crab Cancer pagurus. Materials Science and Engineering MSE 2010, Darmstadt, Germany (2010)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…