Microstructure And Mechanical Properties Of Additively Manufactured Pearl® Micro AD730®. World PM 2022 Congress and Exhibition, Code 188680, Lyon, France, October 09, 2022 - October 13, 2022. (2022)
Lilensten, L.; Antonov, S.; Raabe, D.; Tin, S.; Gault, B.; Kontis, P.: Deformation of Borides in Nickel-based Superalloys: a Study of Segregation at Dislocations. M & M 2019 - Microscopy & Microanalysis, Portland, OR, USA, August 04, 2019 - August 08, 2019. Microscopy and Microanalysis 25, S2 Ed., pp. 2538 - 2539 (2019)
Antonov, S.: Understanding phase transformations at boundaries and interfaces in β-Titanium alloys at the near-atomic scale. Conference on Possibilities and Limitations of Quantitative Materials Modeling and Characterization, Bernkastel-Kues, Germany (2021)
Antonov, S.: Understanding the Defect-Solute Interactions during Deformation of Superalloys. Colloquium, Oak Ridge National Laboratory, online, Oak Ridge, TN, USA (2021)
Antonov, S.: Towards Improved Superalloy Performance via Defect Engineering. Department of Mechanical Colloquium, Industrial, and Manufacturing Engineering, Oregon State University, online, Corvallis, OR, USA (2021)
Antonov, S.; Shi, R.; Li, D.; Kloenne, Z.; Zheng, Y.; Fraser, H. L.; Raabe, D.; Gault, B.: Atom Probe Tomographic Study of Precursor Metastable Phases and Their Influence on a Precipitation in the Metastable ß-titanium Alloy, Ti–5Al–5Mo–5V–3Cr. TMS 2021 Annual Meeting & Exhibition, online, Pittsburgh, PA, USA (2021)
Antonov, S.: Understanding Superalloys on the Atomic Scale. Department of Materials Science Colloquium, University of Illinois Urbana-Champaign, online, Urbana, IL, USA (2021)
Antonov, S.: Overview of the Damage Accumulation Mechanisms During Non-isothermal Creep of Ni-based superalloys. Seminar, Exponent, online, Atlanta, GA, USA (2020)
In this project we study a new strategy for the theory-guided bottom up design of beta-Ti alloys for biomedical applications using a quantum mechanical approach in conjunction with experiments. Parameter-free density functional theory calculations are used to provide theoretical guidance in selecting and optimizing Ti-based alloys...
In order to explore the possibility of using high entropy alloys (HEAs) for functional applications such as magnetic refrigeration it is necessary to have an in-depth understanding of their magnetic properties. The main goal of this project is to understand and improve the magnetic properties (e.g., saturation magnetization, Curie temperature etc.) in different medium and HEAs.
Electro-responsive interfaces alter their properties in response to an electric potential trigger. Hence, such 'smart' interfaces offer exciting possibilities for applications in, for instance, microfluidics, separation systems, biosensors and -analytics.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
In this project nanoprecipitates are designed via elastic misfit stabilization in Fe–Mn maraging steels by combining transmission electron microscopy (TEM) correlated atom probe tomography (APT) with ab initio simulations. Guided by these predictions, the Al content of the alloys is systematically varied...
Interstitial alloying can improve the mechanical properties of high-entropy alloys (HEAs). In some cases, the interstitial-alloying impact is very different from those in conventional alloys. We investigate the effect of interstitial alloying in fcc CrMnFeCoNi HEA as well as bcc refractory HEAs, particularly focusing on the solution energies and…
The nano-structure of surfaces influences the interactions and reactions occurring on it, which has strong impacts for applications in diverse fields, such as wetting phenomena, electrochemistry or biotechnology. We study these nanoscale structures on functional interfaces by nano-spectroscopy. Furthermore we try to understand their influence on…
Within the EU project „ADVANCE - Sophisticated experiments and optimisation to advance an existing CALPHAD database for next generation TiAl alloys”, MPIE collaborated with Thermocalc-Software AB, Stockholm, Montanuniversität Leoben and Helmholtz-Zentrum Hereon, Geesthacht. At MPIE the focus lay on the production and heat treatments of model alloys…