Dutta, B.: Coupling of magnetic and lattice degrees of freedom in magnetic Heusler alloys: Consequences for phase diagrams. Seminar at Materials Research Centre, Indian Institute of Science, Bengaluru, India (2017)
Dutta, B.; Hickel, T.; Neugebauer, J.: Finite temperature excitation mechanisms and their coupling in magnetic shape memory alloys. The Materials Research Centre (MRC), Indian Institute of Science (IISc), Bangalore, India (2017)
Dutta, B.; Begum, V.; Hickel, T.; Neugebauer, J.: Impact of doping on the magnetic and structural transformations in magnetocaloric materials. DPG Spring Meeting of the Condensed Matter Section, Dresden, Germany (2017)
Dutta, B.; Hickel, T.; Neugebauer, J.: Ab initio modelling of phase diagrams in magnetic Heusler alloys: achievements and future challenges. SUSTech Global Scientists Forum, Shenzhen, China (2017)
Dutta, B.; Hickel, T.; Neugebauer, J.: Intermartensitic Phase Boundaries in Ni–Mn–Ga Alloys: A Viewpoint from Ab initio Thermodynamics. 5th International Conference on Ferromagnetic Shape Memory Alloys, Sendai, Japan (2016)
Dutta, B.; Hickel, T.; Neugebauer, J.: Phase diagrams in magnetic shape memory alloys: Insights obtained from ab initio thermodynamics. The forty-fifth International Conference on Computer Coupling of Phase Diagrams and Thermochemistry, Awaji Island, Hyogo, Japan (2016)
Dutta, B.; Debashish, D.; Ghosh, S.; Sanyal, B.; Hickel, T.; Neugebauer, J.: Intricacies of phonon line shapes in random alloys: A first-principles study. DPG Spring Meeting of the Condensed Matter Section, Regensburg, Germany (2016)
Dutta, B.; Begum, V.; Hickel, T.; Neugebauer, J.: Impact of point defects on the phase stability in Heusler alloys: A first-principles study. DPG Spring Meeting of the Condensed Matter Section, Regensburg, Germany (2016)
Dutta, B.; Körmann, F.; Hickel, T.; Ghosh, S.; Sanyal, B.; Neugebauer, J.: The Itinerant Coherent Potential Approximation for phonons: role of fluctuations for systems with magnetic and chemical disorder. Materials Theory Group, Oak Ridge National Laboratory, Oak Ridge, TN, USA (2015)
Dutta, B.; Körmann, F.; Hickel, T.; Neugebauer, J.: The itinerant coherent potential approximation for phonons: Role of fluctuations for systems with magnetic disorder. 2nd German-Austrian Workshop, Kirchdorf, Austria (2015)
We have studied a nanocrystalline AlCrCuFeNiZn high-entropy alloy synthesized by ball milling followed by hot compaction at 600°C for 15 min at 650 MPa. X-ray diffraction reveals that the mechanically alloyed powder consists of a solid-solution body-centered cubic (bcc) matrix containing 12 vol.% face-centered cubic (fcc) phase. After hot compaction, it consists of 60 vol.% bcc and 40 vol.% fcc. Composition analysis by atom probe tomography shows that the material is not a homogeneous fcc–bcc solid solution
Magnetic properties of magnetocaloric materials is of utmost importance for their functional applications. In this project, we study the magnetic properties of different materials with the final goal to discover new magnetocaloric materials more suited for practical applications.
In this project, we work on the use of a combinatorial experimental approach to design advanced multicomponent multi-functional alloys with rapid alloy prototyping. We use rapid alloy prototyping to investigate five multicomponent Invar alloys with 5 at.% addition of Al, Cr, Cu, Mn and Si to a super Invar alloy (Fe63Ni32Co5; at.%), respectively…
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
In this project we pursue recent developments in the field of austenitic steels with up to 18% reduced mass density. The alloys are based on the Fe-Mn-Al-C system.
Local lattice distortion is one of the core effects in complex concentrated alloys (CCAs). It has been expected that the strength CCAs can be improved by inducing larger local lattice distortions. In collaboration with experimentalists, we demonstrated that VCoNi has larger local lattice distortions and indeed has much better strength than the…
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.