Grundmeier, G.: Combined In-Situ IRRAS and Kelvin Probe Studies of Plasma Modifications on Polymers and Metals. COST 527 Workshop, Sant Feliu, Spain (2004)
Grundmeier, G.; Wapner, K.; Schönberger, B.; Stratmann, M.: Non-destructive, real time in-situ measurement of de-adhesion processes at buried adhesive/metal interfaces by means of a new Scanning Kelvin Probe Blister Test. Annual Meeting of the American Adhesion Society, Wilmington, UK (2004)
Wapner, K.; Grundmeier, G.: Application of the Scanning Kelvin Probe for the study of de-adhesion processes at thin film engineered adhesive/metal interfaces. Annual Meeting of the American Adhesion Society, Wilmington, UK (2004)
Stratmann, M.; Hausbrand, R.; Rohwerder, M.; Wapner, C.; Grundmeier, G.: Surface Modification of Iron based Alloys for Improved Corrosion Resistance and Adhesion. 13th Asian Pacific Corrosion Control Conference, Corrosion Symposium in NIMS, Tsukuba, Japan (2003)
Grundmeier, G.; Roßenbeck, B.: Spectroscopic, microscopic and electrochemical investigations of protective model latex films on iron. GDCH Jahrestagung, München, Germany (2003)
Grundmeier, G.; Stratmann, M.; Roßenbeck, B.: Spectroscopic, microscopic and electrochemical investigations of protective model latex films on iron. ECASIA, Berlin, Germany (2003)
Grundmeier, G.; Schinkinger, B.: Spectroscopic and Microscopic Analysis of Thin SiO2 Combustion CVD layers for Surface Engineering of Galvanised Steel. EURADH 2002, Glasgow, UK (2002)
Rohwerder, M.; Hausbrand, R.; Grundmeier, G.; Stratmann, M.: Study of electrochemical behaviour of MgZn2 with respect to its effect on the corrosion of Mg-containing zinc coatings on steel. ISE 2002, Düsseldorf, Germany (2002)
Grundmeier, G.: Plasma polymerisation and combustion CVD for the deposition of corrosion resistant thin interfacial films for polymer coated metals. GRC on Aqueous Corrosion 2002, New London, NH, USA (2002)
Grundmeier, G.; Schinkinger, B.: Spectroscopic and Microscopic Analysis of Thin SiO2 Combustion CVD layers for Surface Engineering of Galvanised Steel. Conference Proceedings, Adhesion and Surface Analysis, Loughborough, UK (2002)
Rohwerder, M.; Schilz, C. M.; Unger, M.; Grundmeier, G.: Versagen von Beschichtungssystemen auf Metallen aufgrund von korrosiver Belastung. GUS Diskussionstage "Feuchtklimasicherheit elektronischer Schaltungen", Gesellschaft für Umweltsimulation e.V. (GUS), München, Germany (1998)
Todorova, M.; Valtiner, M.; Grundmeier, G.; Neugebauer, J.: Temperature Stabilised surface reconstructions at polar ZnO(0001). Gordon Research Seminar ''Corrosion - Aqueous'', Colby-Sawyer College, New London, NH, USA (2010)
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.