von Pezold, J.; Neugebauer, J.: Hydrogen enhanced local plasticity - An atomistic study. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Neugebauer, J.: Ab initio design of engineering materials: Status and challenges. UCSB-MPG Workshop on Inorganic Materials for Energy Conversion, Storage and Conservation, UCLA Lake Arrowhead Conference Center, CA, USA (2008)
Neugebauer, J.: Ab initio based modeling of engineering materials: From a predictive thermodynamic description to tailored mechanical properties. UCSB Seminar, University of California, Santa Barbara, USA (2008)
Hickel, T.; Uijttewaal, M.; Grabowski, B.; Neugebauer, J.: First principles Determination of Phase Transitions in Magnetic Shape Memory Alloys. Group Seminar in Materials Department, University of California (UCSB), Santa Barbara, CA, USA (2008)
Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Using Ab Initio to Predict Engineering Parameters in bcc Magnesium-Lithium Alloys. Deutsche Physikalische Gesellschaft Meeting, Berlin, Germany (2008)
Neugebauer, J.: Ab initio basiertes Computergestütztes Materialdesign: Von der chemischen Bindung zu realen Werkstoffeigenschaften. Seminar at the TU Clausthal, TU Clausthal, Germany (2008)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Optical properties of semiconductor nanostructures, a PW-approach to real-space properties. MRL seminar at UCSB, UCSB, Santa Barbara, USA (2008)
Grabowski, B.; Hickel, T.; Neugebauer, J.: From ab initio to materials properties: Accuracy and error bars of DFT thermodynamics. Phonon Workshop, Krakau, Poland (2007)
Hickel, T.; Uijttewaal, M.; Grabowski, B.; Neugebauer, J.: Determination of symmetry reduced structures by a soft-phonon analysis in magnetic shape memory alloys. 2nd Workshop on ab initio phonon calculations, Cracow, Poland (2007)
Neugebauer, J.: Ab initio thermodynamic and kinetics based on material design: Present status and perspectives. Seminar at the University of Oxford, Dept. of Materials, Oxford, UK (2007)
Friák, M.; Sander, B.; Ma, D.; Raabe, D.; Neugebauer, J.: Phase stability and mechanical properties of alloys. International Max-Planck Workshop on Multiscale Modeling of Condensed Matter, Sant Feliu de Guixols, Spain (2007)
Neugebauer, J.: Ab initio thermodynamics. International Max-Planck Workshop Multiscale Materials Modeling of Condensed Matter, Sant Feliu de Guixols, Spain (2007)
Friák, M.; Neugebauer, J.: First principles study of the anomalous volume-composition effect in Fe-Al and Fe-Ga alloys. 4th Discussion Meeting on the Development of Innovative Iron Aluminum Alloys, Interlaken, Switzerland (2007)
Abu-Farsakh, H.; Neugebauer, J.: Ab-initio study of the thermodynamics and kinetics of N at GaAs(001) surface. PAW workshop 2007, Goslar, Germany (2007)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The structures of grain boundaries (GBs) have been investigated in great detail. However, much less is known about their chemical features, owing to the experimental difficulties to probe these features at the near-atomic scale inside bulk material specimens. Atom probe tomography (APT) is a tool capable of accomplishing this task, with an ability…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
The Atom Probe Tomography group in the Microstructure Physics and Alloy Design department is developing integrated protocols for ultra-high vacuum cryogenic specimen transfer between platforms without exposure to atmospheric contamination.
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
The computational materials design department in collaboration with the Technical University Darmstadt and the Ruhr University Bochum developed a workflow to calculate phase diagrams from ab-initio. This achievement is based on the expertise in the ab-initio thermodynamics in combination with the recent advancements in machine-learned interatomic…
Complex simulation protocols combine distinctly different computer codes and have to run on heterogeneous computer architectures. To enable these complex simulation protocols, the CM department has developed pyiron.