Isaac, A.; Sket, F.; Borbély, A.; Sauthoff, G.; Pyzalla, A. R.: Study of cavity evolution during creep by synchrotron microtomography using a volume correlation method. Praktische Metallographie/Practical Metllography 45 (5), pp. 242 - 245 (2008)
Isaac, A.; Sket, F.; Sauthoff, G.; Pyzalla, A.: In-situ 3D Quantification of the Evolution of Creep Cavity Size, Shape and Spatial Orientation using Synchrotron X-ray Tomography. Materials Science and Engineering A 478, pp. 108 - 118 (2008)
Isaac, A.; Dzieciol, K.; Sket, F.; di Michiel, M.; Buslaps, T.; Borbély, A.; Pyzalla, A. R.: Investigation of creep cavity coalescence in brass by in-situ synchrotron X-ray microtomography. In: Proceedings - Spie the International Society for Optical Engineering (Ed. Stock, S. R.). SPIE Optics + Photonics 2008, San Diego, CA, USA, August 10, 2008 - August 14, 2008. SPIE, Bellingham, WA, USA (2008)
Pyzalla, A. R.; Isaac, A.; Sket, F.; Dzieciol, K.; Sauthoff, G.; Borbély, A.: In-situ Characterisation of Creep Damage Evolution in Metallic Materials using Synchrotron Tomography. Symposium "Microstructural Characterisation down to the Atomic Scale", Leoben / Österreich (2007)
Sket, F.; Isaac, A.; Dzieciol, K.; Pyzalla, A. R.: Caracterizacion in-situ en 3D de Danos durante creep usando XMT. Seminario de Ciencias de Mateariales, Huelva, Spain (2007)
Sket, F.; Isaac, A.; Dzieciol, K.; Pyzalla, A. R.: Caracterizacion in-situ en 3D de danos durante creep usando XMT. Jornadas de Investigadoren Iberoamericanos en Ciencia de Materiales, Alicante, Spain (2007)
Pyzalla, A. R.; Isaac, A.; Sket, F.; Dzieciol, K.; Reimers, W.: In-situ Untersuchung der Entwicklung der Kriechschädigung in metallischen Werkstoffen. 53.Metallkunde-Kolloquium, Lech / Österreich (2007)
Isaac, A.; de Souza, D.; Camin, B.; Kottar, A.; Reimers, W.; Buslaps, T.; di Michiel, M.; Pyzalla, A.: In-situ 3D Investigation of Creep Damage. XTOP 2006, 8th Biennial Conference on High Resolution, X-Ray Diffraction and Imaging, Karlsruhe, Baden-Baden, Germany (2006)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…