Klusemann, B.; Yalçinkaya, T.; Geers, M. G. D.; Svendsen, B.: Application of non-convex rate dependent gradient plasticity to the modeling and simulation of inelastic microstructure development and inhomogeneous material behavior. Computational Materials Science 80, pp. 51 - 60 (2013)
Hoefnagels, J. P.M.; Tasan, C. C.; Peters, F. J.; Geers, M. G. D.: Micromechanical characterization of ductile damage in DP steel. In: Conference Proceedings of the Society for Experimental Mechanics Series, Vol. 4, pp. 29 - 35. 2012 Annual Conference on Experimental and Applied Mechanics, Costa Mesa, CA, USA, June 11, 2013 - June 14, 2013. (2013)
Du, C.; Hoefnagels, J. P.M.; Geers, M. G. D.: The role of sub-structure boundaries of lath martensite in plasticity revealed by micro-tensile testing. Arbeitskreis Rasterkraft-mikroskopie und nanomechanische Methoden im FA Materialographie 2017, Aachen, Germany (2017)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
ECCI is an imaging technique in scanning electron microscopy based on electron channelling applying a backscatter electron detector. It is used for direct observation of lattice defects, for example dislocations or stacking faults, close to the surface of bulk samples.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Developing and providing accurate simulation techniques to explore and predict structural properties and chemical reactions at electrified surfaces and interfaces is critical to surmount materials-related challenges in the context of sustainability, energy conversion and storage. The groups of C. Freysoldt, M. Todorova and S. Wippermann develop…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…