Jung, C.; Zhang, S.; Cheng, N.; Scheu, C.; Yi, S.-H.; Choi, P.-P.: Effect of Heat Treatment Temperature on the Crystallization Behavior and Microstructural Evolution of Amorphous NbCo1.1Sn. ACS Applied Materials and Interfaces 15 (39), pp. 46064 - 46073 (2023)
Kim, H.; Bobel, A.; Jung, C.; Olson, G. B.; Euh, K.: Strengthening model development and effects of low diffusing solutes to coarsening resistance in aluminum alloys. Materials Today Communications 36, 106636 (2023)
Kim, S.-H.; Shin, K.; Zhou, X.; Jung, C.; Kim, H. Y.; Pedrazzini, S.; Conroy, M.; Henkelman, G.; Gault, B.: Atom probe analysis of BaTiO3 enabled by metallic shielding. Scripta Materialia 229, 115370 (2023)
Aota, L. S.; Jung, C.; Zhang, S.; Kim, S.-H.; Gault, B.: Revealing Compositional Evolution of PdAu Electrocatalyst by Atom Probe Tomography. ACS Energy Letters 8 (6), pp. 2824 - 2830 (2023)
Bueno Villoro, R.; Zavanelli, D.; Jung, C.; Mattlat, D. A.; Naderloo, R. H.; Pérez, N. A.; Nielsch, K.; Snyder, G. J.; Scheu, C.; He, R.et al.; Zhang, S.: Grain Boundary Phases in NbFeSb Half-Heusler Alloys: A New Avenue to Tune Transport Properties of Thermoelectric Materials. Advanced Energy Materials 13 (13), 2204321 (2023)
Kim, S.-H.; Jun, H.; Jang, K.; Choi, P.-P.; Gault, B.; Jung, C.: Exploring the Surface Segregation of Rh Dopants in PtNi Nanoparticles through Atom Probe Tomography Analysis. The Journal of Physical Chemistry C 127 (46), pp. 22721 - 22725 (2023)
Singh, M. P.; Woods, E.; Kim, S.-H.; Jung, C.; Aota, L. S.; Gault, B.: Facilitating the Systematic Nanoscale Study of Battery Materials by Atom Probe Tomography through in-situ Metal Coating. Batteries & Supercaps 7 (2), e202300403 (2023)
Jung, C.; Jun, H.; Jang, K.; Kim, S.-H.; Choi, P.-P.: Tracking the Mn Diffusion in the Carbon-Supported Nanoparticles Through the Collaborative Analysis of Atom Probe and Evaporation Simulation. Microscopy and Microanalysis 28 (6), pp. 1841 - 1850 (2022)
Schwarz, T.; Hsu, Y.-L.; Dumont, M.; Garcia-Giner, V.; Jung, C.; Porter, A.; Gault, B.: Atom Probe Tomography - a new approach to provide new insights into the interfacial reaction at the liquid-solid interface on the atomic scale. Institute Seminar FAU Erlangen-Nuremberg, Department of Materials Science, Erlangen-Nuremberg, Germany (2025)
Schwarz, T.; Hsu, Y.-L.; Dumont, M.; Garcia-Giner, V.; Jung, C.; Porter, A.; Gault, B.: Atom probe tomography – a new technique to understand biominerals/materials on the atomic scale. 8th BioMAT 2025 - Symposium on Biomaterials and Related Areas, Weimar, Germany (2025)
Zhang, S.; Yu, Y.; Jung, C.; Mattlat, D. A.; Abdellaoui, L.; Scheu, C.: In situ STEM observation of thermoelectric materials under heating and biasing conditions. The 6th joint Sino-German workshop on advanced & correlative electron microscopy of catalysts, quantum phenomena & soft matter, Bad Honnef, Germany (2024)
Zhang, S.; Yu, Y.; Jung, C.; Wang, Z.; Mattlat, D. A.; Abdellaoui, L.; Scheu, C.: In situ microstructural observation and electrical transport measurements of PbTe thermoelectrics by transmission electron microscopy. International Conference on Thermoelectrics ICT, Krakow, Poland (2024)
Bhat, M. K.; Brink, T.; Ding, H.; Jung, C.; Best, J. P.; Dehm, G.: Influence of the Structure and Chemistry of Σ5 Grain Boundaries on Microscale Strengthening in Cu Bicrystals. TMS Annual Meeting and Exhibition 2024, Orlando, FL, USA (2024)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
ECCI is an imaging technique in scanning electron microscopy based on electron channelling applying a backscatter electron detector. It is used for direct observation of lattice defects, for example dislocations or stacking faults, close to the surface of bulk samples.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Developing and providing accurate simulation techniques to explore and predict structural properties and chemical reactions at electrified surfaces and interfaces is critical to surmount materials-related challenges in the context of sustainability, energy conversion and storage. The groups of C. Freysoldt, M. Todorova and S. Wippermann develop…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…