Guo, Y.; Hu, J.; Han, Q.; Sun, B.; Wang, J.; Liu, C.: Microstructure diversity dominated by the interplay between primary intermetallics and eutectics for Al–Ce heat-resistant alloys. Journal of Alloys and Compounds 899, 162914 (2022)
Wang, X.; Liu, C.; Sun, B.; Ponge, D.; Jiang, C.; Raabe, D.: The dual role of martensitic transformation in fatigue crack growth. Proceedings of the National Academy of Sciences of the United States of America 119 (9), e2110139119 (2022)
Wan, D.; Ma, Y.; Sun, B.; Razavi, S. M. J.; Wang, D.; Lu, X.; Song, W.: Evaluation of hydrogen effect on the fatigue crack growth behavior of medium-Mn steels via in-situ hydrogen plasma charging in an environmental scanning electron microscope. Journal of Materials Science & Technology 85, pp. 30 - 43 (2021)
Varanasi, R. S.; Zaefferer, S.; Sun, B.; Ponge, D.: Localized deformation inside the Lüders front of a medium manganese steel. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 824, 141816 (2021)
Li, X.; Sun, B.; Guan, B.; Jia, Y.-F.; Gong, C.-Y.; Zhang, X.; Tu, S.-T.: Elucidating the effect of gradient structure on strengthening mechanisms and fatigue behavior of pure titanium. International Journal of Fatigue 146, 106142 (2021)
Yang, Y.; Mu, W.; Sun, B.; Jiang, H.; Mi, Z.: New insights to understand the strain-state-dependent austenite stability in a medium Mn steel: An experimental and theoretical investigation. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 809, 140993 (2021)
Zhang, J.; Huang, M.; Sun, B.; Zhang, B.; Ding, R.; Luo, C.; Zeng, W.; Zhang, C.; Yang, Z.; van der Zwaag, S.et al.; Chen, H.: Critical role of Lüders banding in hydrogen embrittlement susceptibility of medium Mn steels. Scripta Materialia 190, pp. 32 - 37 (2021)
An, D.; Zhao, H.; Sun, B.; Zaefferer, S.: Direct observations of collinear dislocation interaction in a Fe–17.4 Mn–1.50 Al–0.29 C (wt.%) austenitic steel under cyclic loading by in-situ electron channelling contrast imaging and cross-correlation electron backscatter diffraction. Scripta Materialia 186, pp. 341 - 345 (2020)
Haghdadi, N.; Cizek, P.; Hodgson, P. D.; He, Y.; Sun, B.; Jonas, J. J.; Rohrer, G. S.; Beladi, H.: New insights into the interface characteristics of a duplex stainless steel subjected to accelerated ferrite-to-austenite transformation. Journal of Materials Science 55 (12), pp. 5322 - 5339 (2020)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…