Amberger, D.; Eisenlohr, P.; Göken, M.: On the importance of a connected hard-phase skeleton for the creep resistance of Mg alloys. Acta Materialia 60, pp. 2277 - 2289 (2012)
Lebensohn, R.A.; Kanjarla, A.K.; Eisenlohr, P.: An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. International Journal of Plasticity 32-33, pp. 59 - 69 (2012)
Yang, Y.; Wang, L.; Zambaldi, C.; Eisenlohr, P.; Barabash, R.; Liu, W.; Stoudt, M. R.; Crimp, M. A.; Bieler, T. R.: Characterization and Modeling of Heterogeneous Deformation in Commercial Purity Titanium. Journal of Microscopy 63 (9), pp. 66 - 73 (2011)
Blum, W.; Eisenlohr, P.: Structure Evolution and Deformation Resistance in Production and Application of Ultrafine-grained Materials -- the Concept of Steady-state Grains. Materials Science Forum 683, pp. 163 - 181 (2011)
Mekala, S.; Eisenlohr, P.; Blum, W.: Control of dynamic recovery and strength by subgrain boundaries - Insights from stress-change tests on CaF2 single crystals. Philosophical Magazine A 91 (6), pp. 908 - 931 (2011)
Yang, Y.; Wang, L.; Bieler, T.; Eisenlohr, P.; Crimp, M.: Quantitative Atomic Force Microscopy Characterization and Crystal Plasticity Finite Element Modeling of Heterogeneous Deformation in Commercial Purity Titanium. Metallurgical and Materials Transactions A 42 (3), pp. 636 - 644 (2011)
Amberger, D.; Eisenlohr, P.; Göken, M.: Influence of microstructure on creep strength of MRI 230D Mg alloy. Journal of Physics: Conference Series 240 (1), 012068, pp. 01268-1 - 01268-4 (2010)
Blum, W.; Eisenlohr, P.: A simple dislocation model of the influence of high-angle boundaries on the deformation behavior of ultrafine-grained materials. Journal of Physics: Conference Series 240 (1), 012136, pp. 012136-1 - 012136-4 (2010)
Liu, B.; Raabe, D.; Roters, F.; Eisenlohr, P.; Lebensohn, R. A.: Comparison of finite element and fast Fourier transform crystal plasticity solvers for texture prediction. Modelling and Simulation in Materials Science and Engineering 18 (8), 085005, pp. 085005-1 - 085005-21 (2010)
Tjahjanto, D. D.; Eisenlohr, P.; Roters, F.: A novel grain cluster-based homogenization scheme. Modelling and Simulation in Materials Science and Engineering 18 (1), 015006, pp. 015006-1 - 015006-21 (2010)
Wang, L.; Eisenlohr, P.; Yang, Y.; Bieler, T. R.; Crimp, M. A.: Nucleation of paired twins at grain boundaries in titanium. Scripta Materialia 63, pp. 827 - 830 (2010)
Wang, L.; Yang, Y.; Eisenlohr, P.; Bieler, T. R.; Crimp, M. A.; Mason, D. E.: Twin Nucleation by Slip Transfer across Grain Boundaries in Commercial Purity Titanium. Metallurgical and Materials Transactions A 41 (2), pp. 421 - 430 (2010)
Sadrabadi, P.; Eisenlohr, P.; Wehrhan, G.; Stäblein, J.; Parthier, L.; Blum, W.: Evolution of dislocation structure and deformation resistance in creep exemplified on single crystals of CaF2. Materials Science and Engineering A 510-511, pp. 46 - 50 (2009)
Amberger, D.; Eisenlohr, P.; Göken, M.: Microstructural evolution during creep of Ca-containing AZ91. Materials Science and Engineering A 510-511, pp. 398 - 402 (2009)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
A high degree of configurational entropy is a key underlying assumption of many high entropy alloys (HEAs). However, for the vast majority of HEAs very little is known about the degree of short-range chemical order as well as potential decomposition. Recent studies for some prototypical face-centered cubic (fcc) HEAs such as CrCoNi showed that…
Electron channelling contrast imaging (ECCI) is a powerful technique for observation of extended crystal lattice defects (e.g. dislocations, stacking faults) with almost transmission electron microscopy (TEM) like appearance but on bulk samples in the scanning electron microscope (SEM).
We simulate the ionization contrast in field ion microscopy arising from the electronic structure of the imaged surface. For this DFT calculations of the electrified surface are combined with the Tersoff-Hamann approximation to electron tunneling. The approach allows to explain the chemical contrast observed for NiRe alloys.
Decarbonisation of the steel production to a hydrogen-based metallurgy is one of the key steps towards a sustainable economy. While still at the beginning of this transformation process, with multiple possible processing routes on different technological readiness, we conduct research into the related fundamental scientific questions at the MPIE.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…