Voß, S.; Stein, F.; Palm, M.; Raabe, D.: Mechanical Properties of Laves Phases in the Systems Fe–Nb(–Al) and Co–Nb(–Al) using Polycrystalline, Single-Phase Material. Materiels Science and Engineering 2010 (MSE), Darmstadt, Germany (2010)
Stein, F.; Lazace, J.: Kinetics of the Peritectoid Decomposition of the Intermetallic Phase Nb2Co7. PTM 2010, Solid-Solid Phase Transformations in Inorganic Materials, Avignon, France (2010)
Friák, M.; Deges, J.; Krein, R.; Stein, F.; Palm, M.; Frommeyer, G.; Neugebauer, J.: Combining Experimental and Computational Methods in the Development of Fe3Al-based Materials. 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys (FEAL 2009), Prague, Czech Republic (2009)
Stein, F.; Prymak, O.: Experimental Investigation of Phases and Phase Equilibria in the Ternary Fe–Al–Nb System. 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Prague, Czech Republic (2009)
He, C.; Stein, F.; Palm, M.: Thermodynamic Assessment of the Nb–Co and Nb–Co–Al System. 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and Their Applications to Solidification, Kornelimünster, Aachen, Germany (2009)
Stein, F.; Prymak, O.; Dovbenko, O. I.; He, C.; Palm, M.; Schuster, J. C.: Investigation of Phase Diagrams of Laves Phase Containing Binary and Ternary Nb–TM(–Al) Systems with TM=Cr,Fe,Co. 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and Their Applications to Solidification, Kornelimünster, Aachen, Germany (2009)
Vogel, S. C.; Eumann, M.; Palm, M.; Stein, F.: Investigation of the crystallographic structure of the ε phase in the Fe–Al system by high-temperature neutron diffraction. TMS 2009 Annual Meeting, San Francisco, CA, USA (2009)
Stein, F.: The Binary Fe–Al System. 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys (FEAL 2009), Prague, Czech Republic (2009)
Kumar, K. S.; Stein, F.; Palm, M.: An in-situ electron microscopy study of microstructural evolution in a Co–Co2Nb binary alloy. MRS Fall Meeting 2008, Boston, MA, USA (2008)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
ECCI is an imaging technique in scanning electron microscopy based on electron channelling applying a backscatter electron detector. It is used for direct observation of lattice defects, for example dislocations or stacking faults, close to the surface of bulk samples.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Developing and providing accurate simulation techniques to explore and predict structural properties and chemical reactions at electrified surfaces and interfaces is critical to surmount materials-related challenges in the context of sustainability, energy conversion and storage. The groups of C. Freysoldt, M. Todorova and S. Wippermann develop…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…