Neugebauer, J.; Hickel, T.: Density functional theory in materials science. Wiley Interdisciplinary Reviews-Computational Molecular Science 3 (5), pp. 438 - 448 (2013)
Freysoldt, C.; Pfanner, G.; Neugebauer, J.: The dangling-bond defect in amorphous silicon: Statistical random versus kinetically driven defect geometries. Journal of Non-Crystalline Solids 358 (17), pp. 2063 - 2066 (2012)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.; Gerstmann, U.: Ab initio EPR parameters for dangling-bond defect complexes in silicon: Effect of Jahn-Teller distortion. Physical Review B 85 (19), 195202, pp. 1 - 8 (2012)
Schick, M.; Hallstedt, B.; Glensk, A.; Grabowski, B.; Hickel, T.; Hampl, M.; Gröbner, J.; Neugebauer, J.; Schmid-Fetzer, R.: Combined ab initio, experimental, and CALPHAD approach for an improved thermodynamic evaluation of the Mg–Si system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry 37, pp. 77 - 86 (2012)
Holec, D.; Friák, M.; Neugebauer, J.; Mayrhofer, P. H.: Trends in the elastic response of binary early transition metal nitrides. Physical Review B 85, pp. 064101-1 - 064101-9 (2012)
Hickel, T.; Grabowski, B.; Körmann, F.; Neugebauer, J.: Advancing density functional theory to finite temperatures: Methods and applications in steel design. Journal of Physics: Condensed Matter 24, 053202 (2012)
Holec, D.; Friák, M.; Dlouhy, A.; Neugebauer, J.: Ab initio study of pressure stabilized NiTi allotropes: Pressure-induced transformations and hysteresis loops. Physical Review B 84, pp. 224119-1 - 224119-8 (2011)
Grabowski, B.; Söderlind, P.; Hickel, T.; Neugebauer, J.: Temperature-driven phase transitions from first principles including all relevant excitations: The fcc-to-bcc transition in Ca. Physical Review B 84 (21), pp. 214107-1 - 214107-20 (2011)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
ECCI is an imaging technique in scanning electron microscopy based on electron channelling applying a backscatter electron detector. It is used for direct observation of lattice defects, for example dislocations or stacking faults, close to the surface of bulk samples.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Developing and providing accurate simulation techniques to explore and predict structural properties and chemical reactions at electrified surfaces and interfaces is critical to surmount materials-related challenges in the context of sustainability, energy conversion and storage. The groups of C. Freysoldt, M. Todorova and S. Wippermann develop…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…