Vieira Rielli, V.; Theska, F.; Yao, Y.; Best, J. P.; Primig, S.: Local composition and nanoindentation response of δ-phase and adjacent γ′′-free zone in a Ni-based superalloy. Materials Research Letters 10 (5), pp. 301 - 309 (2022)
Isa, F.; Best, J. P.; Marzegalli, A.; Albani, M.; Compte, C.; Kruzic, J. J.; Bendavid, A.: Stress engineering of boron doped diamond thin films via micro-fabrication. APL Materials 9, 061109 (2021)
Rehman, U.; Tian, C.; Stein, F.; Best, J. P.; Dehm, G.: Fracture Toughness of the Intermetallic C15 Al2Ca Laves Phase Determined using a Micropillar Splitting Technique. In: Intermetallics 2021, pp. 155 - 156. Intermetallics 2021, Kloster Banz, Bad Staffelstein, Germany, October 04, 2021 - October 08, 2021. (2021)
Lee, J. S.; Dehm, G.; Best, J. P.; Stein, F.: A Micromechanical Study on the Correlation of Composition and Properties of B2 FeAl across the Interface of an Fe–Al Diffusion Couple. ECR Day, Ruhr Universität Bochum, Bochum, Germany (2024)
Best, J. P.: Relationships between local interface chemistry and mechanics probed through in situ micromechanical testing. International Workshop on Materials Behavior at Micro- and Nano-Scale, Xi'an, China (2024)
Vacirca, D.; Bignoli, F.; Li Bassi, A.; Best, J. P.; Dehm, G.; Faurie, D.; Djemia, P.; Ghidelli, M.: Boosting mechanical properties of thin film high entropy alloys through nanoengineering design strategies. 16th International Conference on Local Mechanical Properties, Prague, Czech Republic (2024)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…