Cereceda, D.; Diehl, M.; Roters, F.; Raabe, D.; Perlado, J. M.; Marian, J.: An atomistically-informed crystal plasticity model to predict the temperature dependence of the yield strength of single-crystal tungsten. XXV International Workshop on Computational Micromechanics of Materials, Bochum, Germany (2015)
Roters, F.; Zhang, S.; Shantraj, P.: Including damage modelling into crystal plasticity simulation. XXV International Workshop on Computational Micromechanics of Materials, Bochum, Germany (2015)
Wong, S. L.; Roters, F.: Multiscale micromechanical modelling for advanced high strength steels including both the TRIP and TWIP effect. XXV International Workshop on Computational Micromechanics of Materials, Bochum, Germany (2015)
Diehl, M.; Eisenlohr, P.; Roters, F.; Shanthraj, P.; Reuber, J. C.; Raabe, D.: DAMASK: The Düsseldorf Advanced Material Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. Seminar of the Centro Nacional de Investigaciones Metalúrgicas (CENIM) del CSIC , Madrid, Spain (2015)
Roters, F.: Multi-scale Micromechanics and Damage: From Model Development to Real Systems. IEK-Kolloquium „Simulation von Energiematerialien“
, Jülich, Germany (2015)
Wong, S. L.; Roters, F.: A crystal plasticity model for advanced high strength steels including both TRIP and TWIP effect. 12th International Conference on the Mechanical Behavior of Materials ICM 12
, Karlsruhe, Germany (2015)
Diehl, M.; Shanthraj, P.; Roters, F.; Tasan, C. C.; Raabe, D.: A Virtual Laboratory to Derive Mechanical Properties. M2i Conference "High Tech Materials: your world - our business"
, Sint Michielgestel, The Netherlands (2014)
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Start of a collaborative research project on the sustainable production of manganese and its alloys being funded by European Union with 7 million euros
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science