Prokopčáková, P.; Palm, M.: Precipitation and transformation kinetics in Fe–Al–Ta alloys. Intermetallics 2013, Educational Center Kloster Banz, Bad Staffelstein, Germany (2013)
Izanlou, A.; Todorova, M.; Friák, M.; Palm, M.; Neugebauer, J.: Theoretical study of the environmental effect of H-containing gases on Fe–Al surfaces. International Meeting on Iron Aluminide Alloys, Lanzarote, Canary Island, Spain (2011)
Stein, F.; Vogel, S. C.; Eumann, M.; Palm, M.: In-situ Neutron Diffraction Experiments on the Effect of Mo on the Structure of the High-Temperature ε Phase of the Fe–Al System. 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys (FEAL 2009), Prague, Czech Republic (2009)
Vogel, S. C.; Eumann, M.; Palm, M.; Stein, F.: Investigation of the crystallographic structure of the ε phase in the Fe–Al system by high-temperature neutron diffraction. 4th Discussion Meeting of the Development of Innovative Iron Aluminium Alloys, Interlaken, Switzerland (2007)
Eumann, M.; Sauthoff, G.; Palm, M.: Experimental determination of phase equlibria in the Fe–Al–Mo system. 3rd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann, Germany (2006)
Milenković, S.; Palm, M.; Frommeyer, G.; Schneider, A.: Microstructure and mechanical properties of Fe–Al–Nb eutectic alloys. 3rd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann, Germany (2006)
Palm, M.; Lacaze, J. C.: Assessment of the Al–Fe–Ti system. 3rd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann, Germany (2006)
Palm, M.; Risanti, D.-D.; Stallybrass, C.; Stein, F.; Sauthoff, G.: Strengthening of Corrosion-Resistant Fe–Al Alloys Through Intermetallic Precipitates. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Düsseldorf, Germany (2004)
Stein, F.; Palm, M.; Sauthoff, G.: Mechanical Properties of Two-Phase Iron Aluminium Alloys with Zr(Fe,Al)2 Laves Phase or Zr(Fe,Al)12τ1 Phase. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Düsseldorf, Germany (2004)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests