Stratmann, M.; Kim, K. T.; Streckel, H.: Neue experimentelle Verfahren zur Untersuchung der atmosphärischen Korrosion von mit dünnen Elektrolytfilmen belegten Metallen. Zeitschrift für Metallkunde 81, 10, pp. 715 - 725 (1990)
Stratmann, M.; Streckel, H.: On the Atmospheric Corrosion of Metals, which are covered with Thin Electrolyte Layers. Part 1: Verification of the Experimental Technique. Corrosion Science 30 (6-7), pp. 681 - 696 (1990)
Stratmann, M.; Streckel, H.: On the Atmospheric Corrosion of Metals, which are covered with Thin Electrolyte Layers. Part 2: Experimental Results. Corrosion Science 30 (6-7), pp. 697 - 714 (1990)
Stratmann, M.; Streckel, H.; Kim, K.-t.; Crockett, S.: On the atmospheric corrosion of metals, which are covered with thin electrolyte layers. Part 3: The measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers. Corrosion Science 30 (6-7), pp. 715 - 734 (1990)
Volmer, M.; Stratmann, M.; Viefhaus, H.: Electrochemical and Electron Spectroscopic Investigations of Iron Surfaces Modified with Thiols. Surface and Interface Analysis 16, 1-12, pp. 278 - 282 (1990)
Wolpers, M.; Viefhaus, H.; Stratmann, M.: SEM and SAM Imaging of Silane LB-Films on Metallic Substrates. Applied Surface Science 45, 2, pp. 167 - 170 (1990)
Stratmann, M.; Hoffmann, K.: In-Situ Mößbauer Spectroscopic Study of Reactions within Rust Layers. Corrosion Science 29 (11-12), pp. 1329 - 1352 (1989)
Stratmann, M.; Hoffmann, K.: In situ Möβbauer spectroscopic study of reactions within rust layers. Corrosion Science 29 (11-12), pp. 1329 - 1352 (1989)
Volmer, M.; Stratmann, M.; Viefhaus, H.: Interaction between S-organic compounds and iron surfaces. Fresenius’ Zeitschrift für Analytische Chemie 333 (4-5), p. 545 (1989)
Stratmann, M.; Streckel, H.: The Investigation of the Corrosion of Metal Surfaces, Covered with Thin Electrolyte Layers - A New Experimental Technique. Berichte Bunsengesellschaft Physikalische Chemie 92 (11), pp. 1244 - 1250 (1988)
Volmer, M.; Czodrowski, B.; Stratmann, M.: Electron Spectroscopic and Electrochemical Investigations of Chemically Modified Iron Surfaces. Berichte Bunsengesellschaft Physikalische Chemie 92 (11), pp. 1335 - 1341 (1988)
Stratmann, M.: The investigation of the corrosion properties of metals, covered with adsorbed electrolyte layers-A new experimental technique. Corrosion Science 27 (8), pp. 869 - 872 (1987)
Stratmann, M.; Bohnenkamp, K.; Engell, H.-J.: Investigations Toward Understanding of the Atmospheric Corrosion Processes of Pure Iron. Materials and Corrosion - Werkstoffe und Korrosion 34 (12), pp. 604 - 612 (1983)
Stratmann, M.; Engell, H.-J.: An Electrochemical and Magnetic Study of Phase-Transitions in Rust-Layers during the Atmospheric Corrosion of Iron. Journal of the Electrochemical Society 130 (8), p. C313 (1983)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.