Todorova, M.; Neugebauer, J.: Extending the Concept of Semiconductor Defect Chemistry to Electrochemistry. TMS Annual Meeting, San Antonio, TX, USA (2013)
Todorova, M.: Extending thermodynamic concepts combined with first-principles calculations to address questions related to aqueous corrosion: Potential and challenges. Seminar talk at Universität Ulm, Lehrstuhl für Theoretische Chemie, Ulm, Germany (2012)
Bauer, K. D.; Todorova, M.; Hingerl, K.; Neugebauer, J.: Ab-initio Study on Liquid Metal Embrittlement in the Fe/Zn System. DPG Frühjahrstagung 2012, Bochum, Germany (2012)
Cheng, S.-T.; Todorova, M.; Neugebauer, J.: Interactions of 2nd row high electron affinity elements with Mg(0001). DPG Frühjahrstagung 2012, Berlin, Germany (2012)
Izanlou, A.; Todorova, M.; Friák, M.; Neugebauer, J.: Ab initio study of stability of Fe3Al surfaces in contact with an oxygen atmosphere. DPG Frühjahrstagung 2012, Berlin, Germany (2012)
Todorova, M.: Extending the concept of semiconductor defect chemistry to electro-chemistry: Potential and challenges. Seminar talk at Lehrstuhl für Theoretische Chemie, Universität Duisburg-Essen, Essen, Germany (2012)
Todorova, M.: Combining ab initio calculations with thermodynamic concepts to address questions related to aqueous corrosion. Seminar talk at Lehrstuhr für Theoretische Chemie, TU München, München, Germany (2012)
Izanlou, A.; Todorova, M.; Friák, M.; Neugebauer, J.: Ab initio study of stability of Fe3Al surfaces in contact with an oxygen atmosphere. 1st Austrian/German Workshop on Computational Materials Design, Kramsach, Austria (2012)
Izanlou, A.; Todorova, M.; Friák, M.; Palm, M.; Neugebauer, J.: Theoretical study of the environmental effect of H-containing gases on Fe–Al surfaces. FeAl2011, Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Lanzarote, Canary Islands, Spain (2011)
Todorova, M.: Extending the concept of semiconductor defect chemistry to electro-chemistry: Constructing electro-chemical E/pH diagrams based on ab-initio calculations. Workshop ''Modern developments in the ab initio description of charged systems for semiconductors and electrochemistry", Ringberg, Germany (2011)
Todorova, M.: Stabilisation of polar ZnO(0001) surfaces in dry and humid environment. Fritz-Haber-Institut der MPG, Theorie-Seminar, Berlin, Germany (2011)
Todorova, M.: Stability of polar ZnO(0001) surfaces in dry and humid atmosphere. TYC Workshop ''Thermodynamics and kinetics of dopants, defects and adatoms at surfaces'' at University College London, London, UK (2011)
Todorova, M.; Valtiner, M.; Neugebauer, J.: Hydrogen adsorption on polar ZnO(0001)–Zn - Extending equilibrium surface phase diagrams to kinetically stabilised structures. March meeting of the American Physical Society (APS), Dallas, TX, USA (2011)
Todorova, M.; Neugebauer, J.: On the accuracy of ion hydration energies - An ab initio study. 1st Austrian-German workshop on Computational Materials Design, Kramsach, Austria (2011)
Todorova, M.: Corrosion from first principles: A new approach to construct electrochemical E-pH diagrams. Kristallographisches Kolloquium at Fakultät Geowissenschaften, LMU München, München, Germany (2010)
Todorova, M.: Towards Corrosion Control from First Principles - A New Approach to Construct ab initio Electrochemical E-pH Diagrams. Gordon Research Conference ''Corrosion - Aqueous'', Colby-Sawyer College, New London, NH, USA (2010)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.