[1] J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying, Nature. 410 (2001) 450–453. https://doi.org/10.1038/35068529.
[2] T. Wada, K. Yubuta, A. Inoue, H. Kato, Dealloying by metallic melt, Mater. Lett. 65 (2011) 1076–1078. https://doi.org/10.1016/j.matlet.2011.01.054.
[3] P. Geslin, I. Mccue, J. Erlebacher, A. Karma, Topology-generating interfacial pattern formation during liquid metal dealloying, Nat. Commun. 6 (2015) 1–19. https://doi.org/10.1038/ncomms9887.
[4] S.-H. Joo, J.W. Bae, W.-Y. Park, Y. Shimada, T. Wada, H.S. Kim, A. Takeuchi, T.J. Konno, H. Kato, I. V. Okulov, Beating Thermal Coarsening in Nanoporous Materials via High-Entropy Design, Adv. Mater.32 (2020) 1906160. https://doi.org/10.1002/adma.201906160.
[5] T. Wada, K. Yubuta, H. Kato, Evolution of a bicontinuous nanostructure via a solid-state interfacial dealloying reaction, Scr. Mater. 118 (2016) 33–36. https://doi.org/https://doi.org/10.1016/j.scriptamat.2016.03.008.
[6] Z. Lu, C. Li, J. Han, F. Zhang, P. Liu, H. Wang, Z. Wang, C. Cheng, L. Chen, A. Hirata, T. Fujita, J. Erlebacher, M. Chen, Three-dimensional bicontinuous nanoporous materials by vapor phase dealloying, Nat. Commun. 9 (2018) 276. https://doi.org/10.1038/s41467-017-02167-y.
[7] I.V. Okulov, S. V Lamaka, T. Wada, K. Yubuta, M.L. Zheludkevich, J. Weissmüller, J. Markmann, H. Kato, Nanoporous magnesium, Nano Res. 11 (2018) 6428–6435. https://doi.org/10.1007/s12274-018-2167-9.
[8] S.-H. Joo, H. Kato, I.V. Okulov, Evolution of 3D interconnected composites of high-entropy TiVNbMoTa alloys and Mg during liquid metal dealloying, Compos. Part B Eng. 222 (2021) 109044. https://doi.org/https://doi.org/10.1016/j.compositesb.2021.109044.
[9] S.-H. Joo, I. V Okulov, H. Kato, Unusual two-step dealloying mechanism of nanoporous TiVNbMoTa high-entropy alloy during liquid metal dealloying, J. Mater. Res. Technol. (2021). https://doi.org/https://doi.org/10.1016/j.jmrt.2021.08.100.
[10] A.V. Okulov, S.-H. Joo, H.S. Kim, H. Kato, I.V. Okulov, Nanoporous high-entropy alloy by liquid metal dealloying, Metals (Basel). 10 (2020) 1396. https://doi.org/10.3390/met10101396.
[11] S.-H. Joo, Y.B. Jeong, T. Wada, I. V Okulov, H. Kato, Inhomogeneous dealloying kinetics along grain boundaries during liquid metal dealloying, J. Mater. Sci. Technol. 106 (2022) 41–48. https://doi.org/https://doi.org/10.1016/j.jmst.2021.07.023.
[12] M. Mokhtari, T. Wada, C. Le Bourlot, J. Duchet-Rumeau, H. Kato, E. Maire, N. Mary, Corrosion resistance of porous ferritic stainless steel produced by liquid metal dealloying of Incoloy 800, Corros. Sci. (2020) 108468. https://doi.org/https://doi.org/10.1016/j.corsci.2020.108468.
[13] I. V. Okulov, J. Weissmüller, J. Markmann, Dealloying-based interpenetrating-phase nanocomposites matching the elastic behavior of human bone, Sci. Rep. 7 (2017) 20. https://doi.org/10.1038/s41598-017-00048-4.
[14] I.V. Okulov, A.V. Okulov, I.V. Soldatov, B. Luthringer, R. Willumeit-Römer, T. Wada, H. Kato, J. Weissmüller, J. Markmann, Open porous dealloying-based biomaterials as a novel biomaterial platform, Mater. Sci. Eng. C. 83 (2018) 95–103. https://doi.org/10.1016/j.msec.2018.03.008.
[15] J.W. Kim, M. Tsuda, T. Wada, K. Yubuta, S.G. Kim, H. Kato, Optimizing niobium dealloying with metallic melt to fabricate porous structure for electrolytic capacitors, Acta Mater. 84 (2015) 497–505. https://doi.org/10.1016/j.actamat.2014.11.002.
[16] T. Wada, T. Ichitsubo, K. Yubuta, H. Segawa, H. Yoshida, H. Kato, Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process, Nano Lett. 14 (2014) 4505–4510. https://doi.org/10.1021/nl501500g.
[17] Y.B. Jeong, T. Wada, S.-H. Joo, J.-M. Park, J. Moon, H.S. Kim, I.V. Okulov, S.H. Park, J.H. Lee, K.B. Kim, H. Kato, Beyond strength-ductility trade-off: 3D interconnected heterostructured composites by liquid metal dealloying, Compos. Part B Eng. 225 (2021) 109266. https://doi.org/https://doi.org/10.1016/j.compositesb.2021.109266.
[18] I.V. Okulov, J. Wilmers, S.-H. Joo, S. Bargmann, H.S. Kim, H. Kato, Anomalous compliance of interpenetrating-phase composite of Ti and Mg synthesized by liquid metal dealloying, Scr. Mater. 194 (2021) 113660. https://doi.org/https://doi.org/10.1016/j.scriptamat.2020.113660.
[19] I. V. Okulov, P.-A. Geslin, I. V. Soldatov, H. Ovri, S.-H. Joo, H. Kato, Anomalously low modulus of the interpenetrating-phase composite of Fe and Mg obtained by liquid metal dealloying, Scr. Mater. 163 (2019) 133–136. https://doi.org/https://doi.org/10.1016/j.scriptamat.2019.01.017.
[20] A.V. Okulov, A.S. Volegov, J. Weissmüller, J. Markmann, I.V. Okulov, Dealloying-based metal-polymer composites for biomedical applications, Scr. Mater. 146 (2018) 290–294. https://doi.org/10.1016/j.scriptamat.2017.12.022.
[21] J.W. Kim, T. Wada, S.G. Kim, H. Kato, Sub-micron porous niobium solid electrolytic capacitor prepared by dealloying in a metallic melt, Mater. Lett. 116 (2014) 223–226. https://doi.org/10.1016/j.matlet.2013.11.036.
[22] J. Li, L.-Y. Li, P. Jia, I. V Okulov, Electrochemical Behavior of Nanoporous Gold/Polypyrrole Supercapacitor under Deformation, Nanomaterials. 12 (2022). https://doi.org/10.3390/nano12132149.
[23] T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, M. Chen, Atomic origins of the high catalytic activity of nanoporous gold, Nat. Mater. 11 (2012) 775–780. https://doi.org/10.1038/nmat3391.