Wahn, M.; Neugebauer, J.: Generalized Wannier functions: An efficient way to construct ab-initio tight-binding parameters for group-III nitrides. Physica Status Solidi B: Basic Research 243, 7, pp. 1583 - 1587 (2006)
Marquardt, O.; Wahn, M.; Lymperakis, L.; Hickel, T.; Neugebauer, J.: Implementation and application of a multi-scale approach to electronic properties of group III-nitride based semiconductor nanostructures. Workshop on Nitride Based Nanostructures, Berlin, Germany (2007)
Neugebauer, J.; Wahn, M.: Exact exchange within Kohn-Sham formalism. Standard and variational approach. 1. Harzer Ab initio Workshop, Clausthal-Zellerfeld (2006)
Wahn, M.; Neugebauer, J.: The Bandgaps of GaN and InN in Zinc-blende and Wurtzite Phase: DFT Calculations Using the Exact Exchange (EXX) Functional. Workshop Forschergruppe Bremen, Bad Bederkesa, Germany (2005)
Wahn, M.; Neugebauer, J.: Generalized Wannier functions: An accurate and efficient way to construct ab-initio tight-binding orbitals. DPG-Tagung, Berlin, Germany (2005)
Wahn, M.; Neugebauer, J.: Generalized Wannier Functions: An efficient way to construct ab-initio tight-binding orbitals for group-III nitrides. 6th International Conference on Nitride Semiconductors, Bremen, Germany (2005)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Integrated Computational Materials Engineering (ICME) is one of the emerging hot topics in Computational Materials Simulation during the last years. It aims at the integration of simulation tools at different length scales and along the processing chain to predict and optimize final component properties.
Data-rich experiments such as scanning transmission electron microscopy (STEM) provide large amounts of multi-dimensional raw data that encodes, via correlations or hierarchical patterns, much of the underlying materials physics. With modern instrumentation, data generation tends to be faster than human analysis, and the full information content is…
The project’s goal is to synergize experimental phase transformations dynamics, observed via scanning transmission electron microscopy, with phase-field models that will enable us to learn the continuum description of complex material systems directly from experiment.
In order to prepare raw data from scanning transmission electron microscopy for analysis, pattern detection algorithms are developed that allow to identify automatically higher-order feature such as crystalline grains, lattice defects, etc. from atomically resolved measurements.