Posner, R.; Fink, N.; Giza, G.; Grundmeier, G.: Corrosive delamination and ion transport along stretch-formed thin conversion films on galvanized steel. Surface and Coatings Technology 253, pp. 227 - 233 (2014)
Posner, R.; Fink, N.; Wolpers, M.; Grundmeier, G.: Electrochemical electrolyte spreading studies of the protective properties of ultra-thin films on zinc galvanized steel. Surface and Coatings Technology 228, pp. 286 - 295 (2013)
Özcan, Ö.; Pohl, K.; Keil, P.; Grundmeier, G.: Effect of hydrogen and oxygen plasma treatments on the electrical and electrochemical properties of zinc oxide nanorod films on zinc substrates. Electrochemistry Communications 13 (8), pp. 837 - 839 (2011)
Giza, M.; Grundmeier, G.: Combination of FTIR Reflection Absorption Spectroscopy and Work Function Measurements for In Situ Studies of Plasma Modified Passive Films on MgZn2. Plasma Processes and Polymers 8 (7), pp. 607 - 616 (2011)
Itani, H.; Santa, M.; Keil, P.; Grundmeier, G.: Backside SERS Studies of Inhibitor Transport Through Polyelectrolyte Films on Ag-substrates. Journal of Colloid and Interface Science 357 (2), pp. 480 - 486 (2011)
Posner, R.; Sundell, P. E.; Bergman, T.; Roose, P.; Heylen, M.; Grundmeier, G.; Keil, P.: UV-Curable Polyester Acrylate Coatings: Barrier Properties and Ion Transport Kinetics Along Polymer/Metal Interfaces. Journal of the Electrochemical Society 158 (6), pp. C185 - C193 (2011)
Posner, R.; Santa, M.; Grundmeier, G.: Wet- and Corrosive De-Adhesion Processes of Water-Borne Epoxy Film Coated Steel I. Interface Potentials and Characteristics of Ion Transport Processes. Journal of the Electrochemical Society 158 (3), pp. C29 - C35 (2011)
Santa, M.; Posner, R.; Grundmeier, G.: Wet- and Corrosive De-Adhesion Processes of Water-Borne Epoxy Film Coated Steel II. The Influence of -Glycidoxypropyltrimethoxysilane as an Adhesion Promoting Additive. Journal of the Electrochemical Society 158 (3), pp. C36 - C41 (2011)
Grundmeier, G.; Posner, R.: Disbonding processes at polymer-metal interfaces: From a molecular-level understanding to self-healing processes. Galvanotechnik 101 (6), pp. 1253 - 1255 (2010)
Posner, R.; Giza, G.; Marazita, M.; Grundmeier, G.: Ion transport processes at polymer/oxide/metal interfaces under varying corrosive conditions. Corrosion Science 52 (5), pp. 1838 - 1846 (2010)
Posner, R.; Marazita, M.; Amthor, S.; Roschmann, K. J.; Grundmeier, G.: Influence of interface chemistry and network density on interfacial ion transport kinetics for styrene/acrylate copolymer coated zinc and iron substrates. Corrosion Science 52 (3), pp. 754 - 760 (2010)
Titz, T.; Hoerzenberger, F.; Van den Bergh, K.; Grundmeier, G.: Correlation of interfacial electrode potential and corrosion resistance of plasma polymer coated galvansied steel. Part 2: Influence of forming induced defects. Corrosion Science 52 (2), pp. 378 - 386 (2010)
Thissen, P.; Valtiner, M.; Grundmeier, G.: Stability of Phosphonic Acid Self-Assembled Monolayers on Amorphous and Single-Crystalline Aluminum Oxide Surfaces in Aqueous Solution. Langmuir 26 (1), pp. 156 - 164 (2010)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…
The field of micromechanics has seen a large progress in the past two decades, enabled by the development of instrumented nanoindentation. Consequently, diverse methodologies have been tested to extract fundamental properties of materials related to their plastic and elastic behaviour and fracture toughness. Established experimental protocols are…
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…