Shirtcliffe, N. J.; Stratmann, M.; Grundmeier, G.: In situ infrared spectroscopic studies of ultrathin inorganic film growth on zinc in non-polymerizing cold plasmas. Surf Interface Anal 35, 10, pp. 799 - 804 (2003)
Rebhan, M. E.; Rohwerder, M.; Stratmann, M.: Formation of mesoscopic structures by the CVD of SiH4 on Fe(100). Chemical Vapor Deposition 8 (6), pp. 259 - 261 (2002)
Maupai, S.; Stratmann, M.; Dakkouri, A. S.: Ex-situ characterization of electrochemically generated Cu nanostructures. Electrochemical and Solid State Letters 5, pp. C35 - C37 (2002)
Pietsch, S.; Kaiser, W. D.; Stratmann, M.: Corrosion-protective effect of organic coatings at the defect – influence of surface preparation and anti-corrosive pigments of base coating. Materials and Corrosion - Werkstoffe und Korrosion 53, 5, pp. 299 - 305 (2002)
Shirtcliffe, N.; Thiemann, P.; Stratmann, M.; Grundmeier, G.: Chemical structure and morphology of thin, organo-silicon plasma-polymer films as a function of process parameters. Surface & Coatings Technology 142-144, pp. 1121 - 1128 (2001)
Fürbeth, W.; Stratmann, M.: The delamination of polymeric coatings from electrogalvanised steel – A mechanistic approach. Part 1: delamination from a defect with intact zinc layer. Corrosion Science 43, 2, pp. 207 - 227 (2001)
Fürbeth, W.; Stratmann, M.: The delamination of polymeric coatings from electrogalvanised steel – A mechanistic approach. Part 2: Delamination from a defect down to steel. Corrosion Science 43, 2, pp. 229 - 241 (2001)
Fürbeth, W.; Stratmann, M.: The delamination of polymeric coatings from electrogalvanised steel – A mechanistic approach. Part 3: Delamination kinetics and influence of CO2. Corrosion Science 43, 2, pp. 243 - 254 (2001)
Hassel, A. W.; van der Kloet, J.; Schmidt, W.; Stratmann, M.: In-situ SKP Investigation and ToF-SIMS Analysis of Filiform Corrosion on Aluminium Alloy 2024-T3. Proceed. Japan Soc. CoRR. Engineer. Mater. Environments 48, pp. 61 - 69 (2001)
Hornung, E.; Rohwerder, M.; Stratmann, M.: Elektrochemische Reaktionen an verborgenen Metall/Polymer-Grenzflächen Elektrochemische Verfahren für neue Technologien. Gesellschaft Deutscher Chemiker: GDCh-Monographien (Elektrochemische Verfahren für neue Technologien: Beiträge, die anlässlich der 40. Jahrestagung der Fachgruppe "Angewandte Elektrochemie" im September 2000 in Ulm) 21, pp. 22 - 30 (2001)
Rebhan, M. E.; Rohwerder, M.; Stratmann, M.: Electrochemical properties of iron covered by CVD-silicon and silicon-organic molecules. Materials and Corrosion-Werkstoffe und Korrosion 52 (12), pp. 936 - 939 (2001)
Schuhmacher, B.; Müschenborn, W.; Stratmann, M.; Schultrich, B.; Klages, C. P.; Kretschmer, M.; Seyfert, U.; Forster, F.; Tiller, H. J.: Novel coating systems and surface technologies for continuous processing of steel sheet. Advanced Engineering Materials 3, pp. 681 - 689 (2001)
Fili, T.; Rohwerder, M.; Stratmann, M.: Influence of Surface Plasma Pretreatment on the Interface Properties of a-SiC:H-Covered Steel Substrates. Advanced Engineering Materials 2, 6, pp. 378 - 380 (2000)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…
The field of micromechanics has seen a large progress in the past two decades, enabled by the development of instrumented nanoindentation. Consequently, diverse methodologies have been tested to extract fundamental properties of materials related to their plastic and elastic behaviour and fracture toughness. Established experimental protocols are…
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…