Liu, W. C.; Man, C.-S.; Raabe, D.; Morris, J. G.: Effect of hot and cold deformation on the recrystallization texture of continuous cast AA 5052 aluminum alloy. Scripta Materialia 53 (11), pp. 1273 - 1277 (2005)
Song, R.; Ponge, D.; Raabe, D.: Influence of Mn Content on the Microstructure and Mechanical Properties of Ultrafine Grained C–Mn Steels. ISIJ International 45/11, pp. 1721 - 1726 (2005)
Sandim, H. R. Z.; Raabe, D.: EBSD study of grain subdivision of a Goss grain in coarse-grained cold-rolled niobium. Scripta Materialia 53 (2), pp. 207 - 212 (2005)
Song, R.; Ponge, D.; Raabe, D.: Improvement of the work hardening rate of ultrafine grained steels through second phase particles. Scripta Materialia 52/11, pp. 1075 - 1080 (2005)
Song, R.; Ponge, D.; Raabe, D.; Kaspar, R.: Microstructure and crystallographic texture of an ultrafine grained C–Mn steel and their evolution during warm deformation and annealing. Acta Materialia 53 (3), pp. 845 - 858 (2005)
Bastos, A.; Raabe, D.; Zaefferer, S.; Schuh, C.: Characterization of Nanostructured Electrodeposited NiCo Samples by use of Electron Backscatter Diffraction (EBSD). Mater. Res. Soc. Sympos. Proc. 880E, BB1.3. (2005)
Godara, A.; Raabe, D.: Mesoscale simulation of the kinetics and topology of spherulite growth during crystallization of isotactic polypropylen (iPP) by using a cellular automaton. (2005)
Huh, M.-Y.; Lee, J.-H.; Park, S. H.; Engler, O.; Raabe, D.: Effect of Through-Thickness Macro and Micro-Texture Gradients on Ridging of 17%Cr Ferritic Stainless Steel Sheet. Steel Research Int. 76, 11, pp. 797 - 806 (2005)
Raabe, D.; Hantcherli, L.: 2D cellular automaton simulation of the recrystallization texture of an IF sheet steel under consideration of Zener pinning. Computational Materials Science 34, pp. 299 - 313 (2005)
Raabe, D.; Romano, P.; Al-Sawalmih, A.; Sachs, C.; Servos, G.; Hartwig, H. G.: Mesostructure of the Exoskeleton of the Lobster Homarus Americanus. Mater. Res. Soc. Sympos. Proc. 874, pp. 155 - 160 (2005)
Raabe, D.; Romano, P.; Sachs, C.; Al-Sawalmih, A.; Brokmeier, H. G.; Yi, S. B.; Servos, G.; Hartwig, H. G.: Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nano-composite tissue. Journal of Crystal Growth 283, 1-2, pp. 1 - 7 (2005)
Raabe, D.; Sachs, C.; Romano, P.: The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Materialia 53, pp. 4281 - 4292 (2005)
Raabe, D.; Wang, Y.; Roters, F.: Crystal plasticity simulation study on the influence of texture on earing in steel. Computational Materials Science 34, pp. 221 - 234 (2005)
Storojeva, L.; Ponge, D.; Raabe, D.; Kaspar, R.: On the influence of heavy warm reduction on the microstructure and mechanical properties of a medium-carbon ferritic steel. Zeitschrift für Metallkunde 95/12, pp. 1108 - 1114 (2004)
Storojeva, L.; Ponge, D.; Kaspar, R.; Raabe, D.: Development of Microstructure and Texture of Medium Carbon Steel during Heavy Warm Deformation. Acta Materialia 52/8, pp. 2209 - 2220 (2004)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Crystal plasticity modelling has gained considerable momentum in the past 20 years [1]. Developing this field from its original mean-field homogenization approach using viscoplastic constitutive hardening rules into an advanced multi-physics continuum field solution strategy requires a long-term initiative. The group “Theory and Simulation” of…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.
The structure of grain boundaries (GBs) is dependent on the crystallographic structure of the material, orientation of the neighbouring grains, composition of material and temperature. The abovementioned conditions set a specific structure of the GB which dictates several properties of the materials, e.g. mechanical behaviour, diffusion, and…
The goal of this project is to develop an environmental chamber for mechanical testing setups, which will enable mechanical metrology of different microarchitectures such as micropillars and microlattices, as a function of temperature, humidity and gaseous environment.
The development of pyiron started in 2011 in the CM department to foster the implementation, rapid prototyping and application of the highly advanced fully ab initio simulation techniques developed by the department. The pyiron platform bundles the different steps occurring in a typical simulation life cycle in a single software platform and…
The project focuses on development and design of workflows, which enable advanced processing and analyses of various data obtained from different field ion emission microscope techniques such as field ion microscope (FIM), atom probe tomography (APT), electronic FIM (e-FIM) and time of flight enabled FIM (tof-FIM).