Erbe, A.: Correspondence Regarding the Article “On the Nature of the Evanescent Wave” (Appl. Spectrosc. 2013. 67[2]: 126-130). How “total” is Total Reflection from Powdered Samples? Applied Spectroscopy 67 (6), pp. 699 - 701 (2013)
Jha, D. K.; Shameem, M.; Patel, A. B.; Kostka, A.; Schneider, P.; Erbe, A.; Deb, P.: Simple synthesis of superparamagnetic magnetite nanoparticles as highly efficient contrast agent. Materials Letters 95, pp. 186 - 189 (2013)
Koelsch, P.; Muglali, M. I.; Rohwerder, M.; Erbe, A.: Third-order effects in resonant sum-frequency-generation signals at electrified metal/liquid interfaces. Journal of the Optical Society of America B-Optical Physics 30 (1), pp. 219 - 223 (2013)
Schneider, P.; Sigel, R.; Lange, M. M.; Beier, F.; Renner, F. U.; Erbe, A.: Activation and fluoride-assisted phosphating of aluminium silicon coated steel. ACS Applied Materials and Interfaces 5 (10), pp. 4224 - 4232 (2013)
Khan, T. R.; Vimalanandan, A.; Marlow, F.; Erbe, A.; Rohwerder, M.: Existence of a lower critical radius for incorporation of silica particles into zinc during electro-codeposition. ACS Applied Materials and Interfaces 4 (11), pp. 6221 - 6227 (2012)
Chen, Y.; Schneider, P.; Erbe, A.: Investigation of native oxide growth on zinc in different atmospheres by spectroscopic ellipsometry. Physica Status Solidi A-Applications and Materials Science 209, pp. 846 - 853 (2012)
Gogoi, M.; Deb, P.; Vasan, G.; Keil, P.; Kostka, A.; Erbe, A.: Direct monophasic replacement of fatty acid by DMSA on SPION surface. Applied Surface Science 258, pp. 9685 - 9691 (2012)
Vasan, G.; Erbe, A.: Incidence angle dependence of enhancement factor in attenuated total reflection surface enhanced infrared absorption spectroscopy studied by numerical solution of the vectorial Maxwell equations. Physical Chemistry Chemical Physics 14, pp. 14702 - 14709 (2012)
Reithmeier, M.; Erbe, A.: Application of thin-film interference coatings in infrared reflection spectroscopy of organic samples in contact with thin metal films. Applied Optics 50 (9), pp. C301 - C308 (2011)
Vasan, G.; Chen, Y.; Erbe, A.: Computation of surface-enhanced infrared absorption spectra of particles at a surface through the Finite Element Method. Journal of Physical Chemistry 115 (7), pp. 3025 - 3033 (2011)
Chen, Y.; Hassel, A. W.; Erbe, A.: Enhancement of the electrocatalytic activity of gold nanoparticles towards methanol oxidation. Electrocatalysis 2 (2), pp. 106 - 113 (2011)
Khan, T. R.; Erbe, A.; Auinger, M.; Marlow, F.; Rohwerder, M.: Electrodeposition of zinc-silica composite coatings: Challenges in incorporating functionalized silica particles into a zinc matrix. Science and Technology of Advanced Materials 12 (5), 055005 (2011)
Hamou, F. R.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical simulation of probing the electric double layer by scanning electrochemical potential microscopy. Electrochimica Acta 55 (18), pp. 5210 - 5222 (2010)
Reithmeier, M.; Erbe, A.: Dielectric interlayers increasing the transparency of metal films for mid-infrared attenuated total reflection spectroscopy. Physical Chemistry Chemical Physics 12, pp. 14798 - 14803 (2010)
Jevremović, I.; Chen, Y.-H.; Altin, A.; Erbe, A.: Mechanisms of Inhibitor Action: Passivation and Self-Healing. In: Corrosion Inhibitors in the Oil and Gas Industries, Vol. Part 2, (Chapter 15), pp. 359 - 382 (Eds. Saji, V. S.; Umoren, S. A.). Wiley-VCH, Weinheim, Germany (2020)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at addressing the specific knowledge gap of experimental data on the mechanical behavior of microscale samples at ultra-short-time scales by the development of testing platforms capable of conducting quantitative micromechanical testing under extreme strain rates upto 10000/s and beyond.
The development of pyiron started in 2011 in the CM department to foster the implementation, rapid prototyping and application of the highly advanced fully ab initio simulation techniques developed by the department. The pyiron platform bundles the different steps occurring in a typical simulation life cycle in a single software platform and…
The project focuses on development and design of workflows, which enable advanced processing and analyses of various data obtained from different field ion emission microscope techniques such as field ion microscope (FIM), atom probe tomography (APT), electronic FIM (e-FIM) and time of flight enabled FIM (tof-FIM).
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The prediction of materials properties with ab initio based methods is a highly successful strategy in materials science. While the working horse density functional theory (DFT) was originally designed to describe the performance of materials in the ground state, the extension of these methods to finite temperatures has seen remarkable…
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.