Zaafarani, N.; Raabe, D.; Singh, R. N.; Roters, F.; Zaefferer, S.: Three dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Materialia 54 (7), pp. 1707 - 1994 (2006)
Ardehali Barani, A.; Ponge, D.; Raabe, D.: Strong and Ductile Martensitic Steels for Automotive Applications. Steel Research International 77, 9-10, pp. 704 - 711 (2006)
Bastos, A.; Zaefferer, S.; Raabe, D.; Schuh, C.: Characterization of the Microstructure and Texture of Nanostructured Electrodeposited NiCo by use of Electron Backscatter Diffraction (EBSD). Acta Materialia 54, pp. 2451 - 2462 (2006)
Ma, A.; Roters, F.; Raabe, D.: A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Materialia 54, pp. 2169 - 2179 (2006)
Ma, A.; Roters, F.; Raabe, D.: Studying the effect of grain boundaries in dislocation density based crystal plasticity finite element simulations. International Journal of Solids and Structures 43, pp. 7287 - 7303 (2006)
Nikolov, S.; Han, C. S.; Raabe, D.: On the origin of size effects in small-strain elasticity of solid polymers. International Journal of Solids and Structures 44, pp. 1582 - 1592 (2006)
Raabe, D.; Romano, P.; Sachs, C.; Fabritius, H.; Al-Sawalmih, A.; Yi, S. B.; Servos, G.; Hartwig, H. G.: Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Materials Science and Engineering A 421, pp. 143 - 153 (2006)
Sachs, C.; Fabritius, H.; Raabe, D.: Experimental investigation of the elastic-plastic deformation of mineralized lobster cuticle by digital image correlation. Journal of Structural Biology 155, pp. 409 - 425 (2006)
Sandim, H. R. Z.; Hayama, A. O. F.; Raabe, D.: Recrystallization of the ODS superalloy PM-1000. Materials Science and Engineering A 430, pp. 172 - 178 (2006)
Sandim, M. J. R.; Stamopoulos, D.; Sandim, H. R. Z.; Ghivelder, L.; Thilly, L.; Vidal, V.; Lecouturier, F.; Raabe, D.: Size effects on the magnetic properties of Cu-Nb nanofilamentary wires processed by severe plastic deformation. Superconducting Science and Technology 19, pp. 1233 - 1239 (2006)
Song, R.; Ponge, D.; Raabe, D.; Speer, J. G.; Matlock, D. K.: Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Materials Science and Engineering A 441, pp. 1 - 17 (2006)
Tikhovskiy, I.; Raabe, D.; Roters, F.: Simulation of the deformation texture of a 17%Cr ferritic stainless steel using the texture component crystal plasticity FE method considering texture gradients. Scripta Materialia 54, pp. 1537 - 1542 (2006)
Varnik, F.; Raabe, D.: Scaling effects in microscale fluid flows at rough solid surfaces. Modeling and Simulation in Materials Science and Engineering 14, pp. 857 - 873 (2006)
Liu, W. C.; Man, C.-S.; Raabe, D.; Morris, J. G.: Effect of hot and cold deformation on the recrystallization texture of continuous cast AA 5052 aluminum alloy. Scripta Materialia 53 (11), pp. 1273 - 1277 (2005)
Song, R.; Ponge, D.; Raabe, D.: Influence of Mn Content on the Microstructure and Mechanical Properties of Ultrafine Grained C–Mn Steels. ISIJ International 45/11, pp. 1721 - 1726 (2005)
Sandim, H. R. Z.; Raabe, D.: EBSD study of grain subdivision of a Goss grain in coarse-grained cold-rolled niobium. Scripta Materialia 53 (2), pp. 207 - 212 (2005)
Song, R.; Ponge, D.; Raabe, D.: Improvement of the work hardening rate of ultrafine grained steels through second phase particles. Scripta Materialia 52/11, pp. 1075 - 1080 (2005)
Song, R.; Ponge, D.; Raabe, D.; Kaspar, R.: Microstructure and crystallographic texture of an ultrafine grained C–Mn steel and their evolution during warm deformation and annealing. Acta Materialia 53 (3), pp. 845 - 858 (2005)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
The field of micromechanics has seen a large progress in the past two decades, enabled by the development of instrumented nanoindentation. Consequently, diverse methodologies have been tested to extract fundamental properties of materials related to their plastic and elastic behaviour and fracture toughness. Established experimental protocols are…
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…