Beese-Vasbender, P. F.: From Microbially Induced Corrosion to Bioelectrical Energy Conversion - Electrochemical Characterization of Sulfate-Reducing Bacteria and Methanogenic Archaea. Dissertation, Fakultät für Chemie und Biochemie der Ruhr-Universität Bochum, Bochum, Germany (2014)
Schuppert, A. K.: Combinatorial screening of fuel cell catalysts for the oxygen reduction reaction. Dissertation, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany (2014)
Meier, J. C.: Degradation phenomena and design principles for stable and active Pt/C fuel cell catalysts. Dissertation, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany (2013)
Rabe, M.; Kasian, O.; Mayrhofer, K. J. J.; Erbe, A.: Schlussbericht zum Vorhaben: Mechanistische Untersuchungen der elektrochemischen Sauerstoffentwicklung auf Modellelektroden - Stabilität der Elektroden, Natur der Oxide und Intermediate - Teilvorhaben des Clusterprojekts "Mangan". Technische Informationsbibliothek (TIB) Hannover, Hannover, Germany (2019), 32 pp.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Crystal plasticity modelling has gained considerable momentum in the past 20 years [1]. Developing this field from its original mean-field homogenization approach using viscoplastic constitutive hardening rules into an advanced multi-physics continuum field solution strategy requires a long-term initiative. The group “Theory and Simulation” of…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.
The structure of grain boundaries (GBs) is dependent on the crystallographic structure of the material, orientation of the neighbouring grains, composition of material and temperature. The abovementioned conditions set a specific structure of the GB which dictates several properties of the materials, e.g. mechanical behaviour, diffusion, and…
The goal of this project is to develop an environmental chamber for mechanical testing setups, which will enable mechanical metrology of different microarchitectures such as micropillars and microlattices, as a function of temperature, humidity and gaseous environment.
The development of pyiron started in 2011 in the CM department to foster the implementation, rapid prototyping and application of the highly advanced fully ab initio simulation techniques developed by the department. The pyiron platform bundles the different steps occurring in a typical simulation life cycle in a single software platform and…
The project focuses on development and design of workflows, which enable advanced processing and analyses of various data obtained from different field ion emission microscope techniques such as field ion microscope (FIM), atom probe tomography (APT), electronic FIM (e-FIM) and time of flight enabled FIM (tof-FIM).