Song, R.; Ponge, D.; Raabe, D.; Kaspar, R.: Microstructure and crystallographic texture of an ultrafine grained C–Mn steel and their evolution during warm deformation and annealing. Acta Materialia 53 (3), pp. 845 - 858 (2005)
Storojeva, L.; Ponge, D.; Raabe, D.; Kaspar, R.: On the influence of heavy warm reduction on the microstructure and mechanical properties of a medium-carbon ferritic steel. Zeitschrift für Metallkunde 95/12, pp. 1108 - 1114 (2004)
Storojeva, L.; Ponge, D.; Kaspar, R.; Raabe, D.: Development of Microstructure and Texture of Medium Carbon Steel during Heavy Warm Deformation. Acta Materialia 52/8, pp. 2209 - 2220 (2004)
Storojeva, L.; Kaspar, R.; Ponge, D.: Effects of Heavy Warm Deformation on Microstructure and Mechanical Properties of a Medium Carbon Ferritic-Pearlitic Steel. ISIJ International 44/7, pp. 1211 - 1216 (2004)
Song, R.; Ponge, D.; Kaspar, R.: The microstructure and mechanical properties of ultrafine grained plain C-Mn steels. Steel Research 75, pp. 33 - 37 (2004)
Stein, F.; Kaspar, R.; Sauthoff, G.: Einfluss der Stahlerzeugung auf Verzugserscheinungen in Werkstücken aus Stahl – Eine kritische Übersicht. Stahl und Eisen 120.2000 (12), pp. 107 - 114 (2000)
Ardehali Barani, A.; Ponge, D.; Kaspar, R.: Improvement of Mechanical Properties of Spring Steels through Application of Thermomechanical Treatment. In: Steel – Future for the Automotive Industry, p. 566 - 566 (Eds. von Hagen, I.; Wieland, H.-J.). Verlag Stahleisen GmbH, Germany (2005)
Stein, F.; Kaspar, R.; Sauthoff, G.: Einfluss der Stahlerzeugung und des Werkstoffanlieferungszustandes auf das Verzugsverhalten. In: Beherrschung von Wärmeprozessen im Fertigungsablauf, pp. 10 - 95 (Eds. Mayr, P.; Hoffmann, F.; Walter, A.; Stiftung Institut für Werkstofftechnik). Selbstverlag, Bremen, Germany (2001)
Ardehali Barani, A.; Ponge, D.; Kaspar, R.: Improvement of Mechanical Properties of Spring Steels through Application of Thermomechanical Treatment. Conf. Proc. Steel for Cars and Trucks, p. 566 (2005)
Song, R.; Kaspar, R.; Ponge, D.; Raabe, D.: The effect of Mn on the microstructure and mechanical properties after heavy warm rolling of C-Mn steel. In: Ultrafine Grained Materials III, pp. 445 - 450 (Eds. Zhu, Y. T.; Langdon, T. G.; Valiev, R. Z.). TMS, Charlotte, North Carolina, USA (2004)
Elsner, A.; Kaspar, R.; Ponge, D.; Raabe, D.; van der Zwaag, S.: Recrystallization Texture of Cold Rolled and Annealed IF Steel Produced from Ferritic Rolled Hot Strip. Materials Science Forum, pp. 257 - 262 (2004)
Song, R.; Ponge, D.; Kaspar, R.: Review of the properties and methods for production of ultrafine grained steels. Lecture at the SMEA Conference 2003, Sheffield (2004)
Song, R.; Ponge, D.; Kaspar, R.: Microstructure and mechanical properties of ultrafine grained steels. Lecture at the workshop KUL-UGent-RWTH-MPIE, Gent University (2004)
Ponge, D.; Song, R.; Kaspar, R.: The effect of Mn on the microstructure and mechanical properties after heavy warm rolling of C-Mn steel. Lecture at the 2004 TMS annual meeting in Charlotte, North Carolina, USA (2004)
Elsner, A.; Kaspar, R.: Deep-Drawable Steel Strip Produced by Ferritic Rolling. Lecture at the International Conference on Processing & Manufacturing of Advanced Materials THERMEC'2003, Leganes, Madrid, Spain (2003)
Storojeva, L.; Kaspar, R.; Ponge, D.: Ferritic-Pearlitic Steel with Deformation Induced Spheroidized Cementite. Lecture at the International Conference on Processing & Manufacturing of Advanced Materials THERMEC'2003, Leganes, Madrid, Spain (2003)
Ardehali Barani, A.; Ponge, D.; Kaspar, R.: Improvement of Mechanical Properties of Spring Steels through Application of Thermomechanical Treatment. Steels for Cars and Trucks, Wiesbaden, Germany (2005)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
The field of micromechanics has seen a large progress in the past two decades, enabled by the development of instrumented nanoindentation. Consequently, diverse methodologies have been tested to extract fundamental properties of materials related to their plastic and elastic behaviour and fracture toughness. Established experimental protocols are…
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…