Choi, P.: Characterization of CuInSe2 and CuInGaSe2 thin-film solar cells using Atom Probe Tomography. International Conference on Electronic Materials and Nanotechnology for Green Environemnt, Jeju Island, South Korea (2010)
Cojocaru-Mirédin, O.; Choi, P.; Wuerz, R.; Raabe, D.: Atomic-scale distribution of impurities in CuInSe2-based thin-film solar cells. 52nd International Field Emission Symposium IFES 2010, Sydney, Australia (2010)
Dmitrieva, O.; Choi, P.; Ponge, D.; Raabe, D.; Gerstl, S. S. A.: Laser-pulsed atom probe studies of a complex maraging steel: Laser pulse energy variation and precipitate analysis. 52nd International Field Emission Symposium IFES 2010, Sydney, Australia (2010)
Li, Y. J.; Choi, P.; Borchers, C.; Chen, Y.Z.; Goto, S.; Raabe, D.; Kirchheim, R.: Atom Probe Tomography characterization of heavily cold drawn pearlitic steel wire. 52nd International Field Emission Symposium (IFES), Sydney, Australia (2010)
Raabe, D.; Li, Y. J.; Choi, P.; Sauvage, X.; Kirchheim, R.; Hono, K.: Atomic-scale mechanisms in mechanical alloying - Towards the limits of strength in ductile nano-structured bulk materials. International Symposium on Metastable, Amorphous and Nanostructured Materials (ISMANAM) 2010, ETH Zürich, Switzerland (2010)
Cojocaru-Mirédin, O.; Choi, P.; Wuerz, R.; Raabe, D.: Atomic-scale distribution of impurities in CuInSe2-based thin-film solar cells. 15th GLADD meeting 2010, Delft, The Netherlands (2010)
Cojocaru-Mirédin, O.; Choi, P.; Wuerz, R.; Liu, T.; Raabe, D.: Characterization of CuInSe2 and Cu(In,Ga)Se2 thin-film solar cells using Atom Probe Tomography. Zentrum für Sonnenenergie und Wasserstoffforschung (ZSW), Stuttgart, Germany (2010)
Jun, H.; Choi, P.-P.; Li, Z.; Raabe, D.: Design of dual-phase refractory multi-principle element alloys. 2nd International Conference on High-Entropy Materials (ICHEM 2018), Jeju, South Korea (2018)
Cojocaru-Mirédin, O.; Schwarz, T.; Choi, P.; Würz, R.; Raabe, D.: Characterization of Cu(In,Ga)Se2 grain boundaries using atom probe tomography. 2013 MRS Spring Meeting & Exhibit, San Francisco, CA, USA (2013)
Herbig, M.; Choi, P.; Raabe, D.: A Sample Holder System that Enables Sophisticated TEM Analysis of APT Tips. International Field Emission Symposium 2012, Tuscaloosa, AL, USA (2012)
Cojocaru-Mirédin, O.; Choi, P.; Wuerz, R.; Raabe, D.: Atomic-scale analysis of the p-n junction in CI(G)S thin-film solar cells. Euromat 2011, Montpellier, France (2011)
Choi, P.: Nanoscale characterization of TiAlN/CrN multilayer hardcoatings. 5th International Union of Microbeam Analysis Societies meeting, Seoul, South Korea (2011)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
In 2020, an interdepartmental software task force (STF) was formed to serve as a forum for discussion on topics related to software development and digital workflows at the MPIE. A central goal was to facilitate interdepartmental collaboration by co-developing and integrating workflows, aligning internally developed software, and rolling out…
The balance between different contributions to the high-temperature heat capacity of materials can hardly be assessed experimentally. In this study, we develop computationally highly efficient ab initio methods which allow us to gain insight into the relevant physical mechanisms. Some of the results have lead to breakdown of the common…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
Developing and providing accurate simulation techniques to explore and predict structural properties and chemical reactions at electrified surfaces and interfaces is critical to surmount materials-related challenges in the context of sustainability, energy conversion and storage. The groups of C. Freysoldt, M. Todorova and S. Wippermann develop…
ECCI is an imaging technique in scanning electron microscopy based on electron channelling applying a backscatter electron detector. It is used for direct observation of lattice defects, for example dislocations or stacking faults, close to the surface of bulk samples.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…