Shah, V.; Sedighiani, K.; Van Dokkum, J. S.; Bos, C.; Roters, F.; Diehl, M.: Coupling crystal plasticity and cellular automaton models to study meta- dynamic recrystallization during hot rolling at high strain rates. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 849, 143471 (2022)
Shah, V.; Krugla, M.; Offerman, S. E.; Sietsma, J.; Hanlon, D. N.: Effect of silicon, manganese and heating rate on the ferrite recrystallization kinetics. ISIJ International 60 (6), pp. 1312 - 1323 (2020)
Shah, V.; Diehl, M.; Roters, F.: Prediction of Nucleation Sites for Recrystallization using Crystal Plasticity Simulations. 7th International Conference on Recrystallization and Grain Growth, Ghent, Belgium (2019)
Shah, V.; Diehl, M.; Roters, F.: Prediction of Nucleation Sites During Recrystallization. M2i conference “Meeting Materials”, Noordwijkerhout, The Netherlands (2018)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
In order to prepare raw data from scanning transmission electron microscopy for analysis, pattern detection algorithms are developed that allow to identify automatically higher-order feature such as crystalline grains, lattice defects, etc. from atomically resolved measurements.