Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Kinetic Monte Carlo simulations and ab initio studies of nano-precipitation in ferritic steels. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Tillack, N.; Yates, J. R.; Roberts, S. G.; Hickel, T.; Drautz, R.; Neugebauer, J.: First-Principles Investigations of ODS Steels. Ab initio Description of Iron and Steel: Thermodynamics and Kinetics, Tegernsee, Germany (2012)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Ab initio study of nano-precipitate nucleation and growth in ferritic steels. Psi-k/CECAM/CCP9 Biennial Graduate School in Electronic-Structure Methods, Oxford, UK (2011)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Ab initio study of nano-precipitate nucleation and growth in ferritic steels. Materials Discovery by Scale-Bridging High-Throughput Experimentation and Modelling, Ruhr-Universität Bochum, Bochum, Germany (2010)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Ab initio and kinetic Monte-Carlo study of nano-precipitate nucleation and growth in ferritic steels. Materials Discovery by Scale-Bridging High-Throughput Experimentation and Modelling, Bochum, Germany (2010)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Kinetic Monte Carlo and ab initio study of nano-precipitates and growth in ferritic steels. Ab Initio Description of Iron and Steel: Mechanical Properties, Tegernsee, Germany (2010)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Combined ab initio studies and kinetic Monte Carlo simulations of nano-precipitation in ferritic steels. Summer School: Computational Materials Science, San Sebastian, Spain (2010)
Tillack, N.: Chemical Trends in the Yttrium-Oxide Precipitates in Oxide Dispersion Strengthened Steels: A First-Principles Investigation. Master, Ruhr-Universität Bochum, Bochum, Germany (2012)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Integrated Computational Materials Engineering (ICME) is one of the emerging hot topics in Computational Materials Simulation during the last years. It aims at the integration of simulation tools at different length scales and along the processing chain to predict and optimize final component properties.