Ma, Y.; Villanova, J.; Requena, G.; Raabe, D.: Understanding the physical-chemical phenomena in green steel production using synchrotron X-ray techniques. European Synchrotron Radiation Facility User Meeting 2022, Online (2022)
Liu, C.; Roters, F.; Raabe, D.: Finite strain crystal plasticity-phase field modeling of twin, dislocation, and grain boundary interactions. 19th International Conference on Strength of Materials ICSMA, Metz, France (2022)
Liu, C.; Shanthraj, P.; Davis, A.; Fellowes, J.; Prangnell, P.; Raabe, D.: Chemo-mechanical phase-field model for two-sublattice phases: phase precipitation in Al–Zn–Mg–Cu alloys. 19th International Conference on Strength of Materials ICSMA, Metz, France (2022)
Raabe, D.: The Science of dirty alloys: recycling-based Aluminium for a circular economyle. The 4th International Conference on Light Materials - Science and Technology, Opening Plenary Lecture (delivered online) (2021)
Morsdorf, L.; Mayweg, D.; Li, Y.; Diederichs, A.; Raabe, D.; Herbig, M.: Moving cracks and missing C atoms – chasing the mysteries of white etching areas in bearings. 2nd meeting of "Metallurgical Metallurgy for Plasticity-driven Damage and Fracture" research forum 2021 (ISIJ), virtual (2021)
Ma, Y.; Zaefferer, S.; Raabe, D.: Hydrogen-based direct reduction of iron ores: Microstructure, crystallography, and reduction mechanisms. 2021 International Metallurgical Processes Workshop for Young Scholars (IMPROWYS2021), a hybrid event, Online (2021)
Antonov, S.; Shi, R.; Li, D.; Kloenne, Z.; Zheng, Y.; Fraser, H. L.; Raabe, D.; Gault, B.: Atom Probe Tomographic Study of Precursor Metastable Phases and Their Influence on a Precipitation in the Metastable ß-titanium Alloy, Ti–5Al–5Mo–5V–3Cr. TMS 2021 Annual Meeting & Exhibition, online, Pittsburgh, PA, USA (2021)
If manganese nodules can be mined in an environmentally friendly way, the critical metals needed for the energy transition could be produced with low CO2 emissions
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.