Isik-Uppenkamp, S.; Laaboudi, A.; Rohwerder, M.: Delamination of Polymer/Metal Interfaces: On the Correlation of Kinetics and Interfacial Structure. 212th ECS Meeting, Washington, D.C., USA (2007)
Laaboudi, A.; Isik-Uppenkamp, S.; Rohwerder, M.: Modelling cathodic delamination: Oxygen reduction and interface degradation at a molecularly well defined coating/metal interface. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flagey, Belgium (2007)
Laaboudi, A.; Rohwerder, M.: Oxygen Reduction on Thiol SAM Modified Au(111). 209th Meeting of The Electrochemical Society, Denver, Colorado, USA (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.