Isaac, A.; de Souza, D.; Camin, B.; Kottar, A.; Reimers, W.; Buslaps, T.; di Michiel, M.; Pyzalla, A.: In-situ 3D Investigation of Creep Damage. XTOP 2006, 8th Biennial Conference on High Resolution, X-Ray Diffraction and Imaging, Karlsruhe, Baden-Baden, Germany (2006)
Pyzalla, A. R.; Kaminski, H.; Camin, B.; Reimers, W.; Buslaps, T.; di Michiel, M.: In-situ Synchrotron X-ray Studies of Creep Damage in CuZn-Alloys. American Crystallography Association Meeting, Honolulu, USA (2006)
Pyzalla, A. R.: Materialforschung mit Neutronen und Synchrotronstrahlung. Kolloquium des Instituts für Eisenhüttenkunde, RWTH Aachen, Aachen, Germany (2006)
Pyzalla, A. R.: Combined Diffraction and Tomography with white and monochromatic high energy synchrotron radiation. ESRF User Meeting, ESRF Grenoble, France (2006)
Juricic, C.; Pinto, H.; Wrobleweski, T.; Pyzalla, A.: Internal Stresses in Oxid Layers on Iron Polycrystals. User Meeting HASYLAB bei DESY, Hamburg, Germany (2006)
Pyzalla, A. R.: Potential of space-resolved studies on materials with synchrotron radiation: Crystalline texture of dinosaur bones. Department für Geo- und Umweltwissenschaften, LMU München, Germany (2006)
Dumont, M.; Kostka, A.; Sander, M.; Borbély, A.; Pyzalla, A. R.: Comparison of apatite crystallite sizes in sauropod and mammal fossil bones. 6th Bone diagenesis meeting, Poppelsdorfer Schloss, University of Bonn, Bonn, Deutschland (2009)
Brito, P.; Pinto, H.; Spiegel, M.; Klaus, M.; Genzel, C.; Pyzalla, A. R.: Phase composition and internal stress development during the oxidation of iron aluminides. ICRS-8, Denver, CO, USA (2008)
Coelho, R. S.; Kostka, A.; Pinto, H.; dos Santos, J.; Pyzalla, A. R.: Microstructure and residual stresses of high-strength steel to aluminium alloy friction stir welds. ICRS-8, Denver, USA (2008)
Coelho, R. S.; Kostka, A.; dos Santos, J.; Pyzalla, A. R.: Friction stir welding of aluminum alloy to steel. Part I: Mechanical properties. VI-PNAM Symposium, Berlin, Germany (2008)
Coelho, R. S.; Kostka, A.; dos Santos, J.; Pyzalla, A. R.: Friction stir welding of aluminum alloy to steel. Part II: Microstructure. VI-PNAM Symposium, Berlin, Germany (2008)
Coelho, R. S.; Kostka, A.; dos Santos, J.; Pyzalla, A. R.: Friction stir welding of aluminum alloy to steel. Part III: Material flow. VI-PNAM Symposium, Berlin, Germany (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…
The goal of this project is to optimize the orientation mapping technique using four-dimensional scanning transmission electron microscopy (4D STEM) in conjunction with precession electron diffraction (PED). The development of complementary metal oxide semiconductor (CMOS)-based cameras has revolutionized the capabilities in data acquisition due to…