Freysoldt, C.; Pfanner, G.; Neugebauer, J.: The Dangling-Bond Defect in Amorphous Silicon: Statistical Random Versus Kinetically Driven Defect Geometries. 24th International Conference on Amorphous and Nanocrystalline Semiconductors (ICANS 24), Nara, Japan (2011)
Fehr, M.; Schnegg, A.; Teutloff, C.; Bittl, R.; Astakhov, O.; Finger, F.; Pfanner, G.; Freysoldt, C.; Neugebauer, J.; Rech, B.et al.; Lips, K.: A Detailed Investigation of Native and Light-induced Defects in Hydrogenated Amorphous Silicon by Electron-spin Resonance. MRS Spring Meeting and Exhibit 2011, San Francisco, CA, USA (2011)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: EPR parameters of the dangling bond defect in crystalline and amorphous silion: A DFT-study. APS march meeting 2011, Dallas, TX, USA (2011)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: EPR parameters of the dangling bond defect in crystalline and amorphous silion: A DFT-study. DPG spring meeting 2011, Dresden, Germany (2011)
Freysoldt, C.: Fully ab initio finite-size corrections for electrostatic artifacts in charged-defect supercell calculations. Psi-k Conference 2010, Berlin, Germany (2010)
Freysoldt, C.; Neugebauer, J.; Van de Walle, C. G.: Charged defects in the supercell approach. Seminar at Duisburg University, Duisburg, Germany (2010)
Freysoldt, C.; Neugebauer, J.; Van de Walle, C. G.: Charged defects in the supercell approach. Seminar at Fritz-Haber-Institut der MPG, Berlin, Germany (2010)
Freysoldt, C.; Neugebauer, J.: Fully ab initio finite size corrections for charged defects in the supercell approach. APS march meeting, Portland, OR, USA (2010)
Mitra, C.; Freysoldt, C.; Neugebauer, J.: Band alignment in the framework of GW theory. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: Ab initio investigations of the silicon dangling bond. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Freysoldt, C.; Neugebauer, J.: Theory of defect distribution at semiconductor interfaces based on ab-initio thermodynamics. MRS Fall Meeting, Boston, MA, USA (2009)
Freysoldt, C.; Neugebauer, J.: Calculation of defect distribution at interfaces from ab-initio-based thermodynamic data. MRS Fall Meeting, Boston, MA, USA (2009)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Highly p-doped GaN:Mg! What hinders the thermal drive-out of hydrogen? 2. Klausurtagung des Graduierten Kollegs: Mikro und Nanostrukturen in der Optoelektronik, Bad Karlshafen, Germany (2009)
Freysoldt, C.; Pfanner, G.; Neugebauer, J.: What can EPR hyperfine parameters tell about the Si dangling bond? - A theoretical study. International conference on amorphous and nanoporous semiconductors (ICANS) 23, Utrecht, Netherlands (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...