Zheludkevich, M. L.; Serra, R.; Grundmeier, G.; Yang, L. H.; Ferreira, M. G. S.: Barrier properties of polyurethane coil coatings treated by microwave plasma polymerization. Surface and Coatings Technology 200 (12-13), pp. 4040 - 4049 (2006)
Wapner, K.; Grundmeier, G.: Spectroscopic analysis of the interface chemistry of ultra-thin plasma polymer films on iron. Surface and Coatings Technology 200 (1-4), pp. 100 - 103 (2005)
Raacke, J.; Giza, M.; Grundmeier, G.: Combination of FTIR reflection absorption spectroscopy and work function measurement for in-situ studies of plasma modification of polymer and metal surfaces. Surface and Coatings Technology 200 (1-4), pp. 280 - 283 (2005)
Carpentier, J.; Grundmeier, G.: Chemical structure and morphology of thin bilayer and composite organosilicon and fluorocarbon microwave plasma polymer films. Surface and Coatings Technology 192 (2-3), pp. 189 - 198 (2005)
Grundmeier, G.; Stratmann, M.: Adhesion and De-adhesion mechanisms at polymer/metal interfaces: Mechanistic understanding based on in situ studies of buried interfaces. Annual Review of Materials Research 35, pp. 571 - 615 (2005)
Wapner, K.; Grundmeier, G.: Application of the Scanning Kelvin Probe for the Study of the Corrosion Resistance of Interfacial Thin Silicon Organic Films at Adhesive/Metal Interfaces. Silicon Chemistry 2 (5-6), pp. 235 - 245 (2005)
Wapner, K.; Schoenberger, B.; Stratmann, M.; Grundmeier, G.: Height-regulating scanning Kelvin probe for simultaneous measurement of surface topology and electrode potentials at buried polymer/metal interfaces. Journal of the Electrochemical Society 152 (3), pp. E114 - E122 (2005)
Wapner, K.; Schönberger, B.; Stratmann, M.; Grundmeier, G.: Applications of a new height regulated Scanning Kelvin Probe in Adhesion and Corrosion Science. Journal of the Electrochemical Society 152 (3), pp. E114 - E122 (2005)
Wapner, K.; Grundmeier, G.: Spatially resolved measurements of the diffusion of water in a model adhesive/silicon lap joint using FTIR-transmission-microscopy. International Journal of Adhesion and Adhesives 24 (3), pp. 193 - 200 (2004)
Barranco, V.; Carpentier, J.; Grundmeier, G.: Correlation of morphology and barrier properties of thin microwave plasma polymer films on metal substrate. Electrochimica Acta 49 (12), pp. 1999 - 2013 (2004)
Barranco, V.; Thiemann, P.; Yasuda, H. K.; Stratmann, M.; Grundmeier, G.: Spectroscopic and electrochemical characterisation of thin cathodic plasma polymer films on iron. Applied Surface Science 229 (1-4), pp. 87 - 96 (2004)
Grundmeier, G.; Thiemann, P.; Carpentier, J.; Shirtcliffe, N.; Stratmann, M.: Tailoring of the morphology and chemical composition of thin organosilane microwave plasma polymer layers on metal substrates. Thin Solid Films 446 (1), pp. 61 - 71 (2004)
Shirtcliffe, N. J.; Stratmann, M.; Grundmeier, G.: In situ infrared spectroscopic studies of ultrathin inorganic film growth on zinc in non-polymerizing cold plasmas. Surf Interface Anal 35, 10, pp. 799 - 804 (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative…
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…