Klemm, S. O.; Topalov, A. A.; Laska, C. A.; Mayrhofer, K. J. J.: Coupling of a high throughput microelectrochemical cell with online multielemental trace analysis by ICP-MS. Electrochemistry Communications 13 (12), pp. 1533 - 1535 (2011)
Laska, C. A.; Rossrucker, L.; Klemm, S. O.; Pust, S. E.; Hüpkes, J.; Mayrhofer, K. J. J.: Die Kopplung von Elektrochemie mit zeitaufgelöster Elementanalytik am Beispiel der chemischen und elektrochemischen Oberflächentexturierung von ZnO-Dünnschichten. In: Tagungsband zur Jahrestagung der Gesellschaft für Korrosionsschutz e.V. 2013, pp. 118 - 128. Jahrestagung der Gesellschaft für Korrosionsschutz e.V. , Frankfurt am Main, Germany, November 12, 2013 - November 13, 2013. (2013)
Laska, C. A.: Development of a Scanning Flow Cell system with Dynamic Electrolyte Change for Fully Automated Parameter Screening. Dissertation, Ruhr-Universität Bochum, Bochum, Germany (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.