Berezkin, A. V.; Kudryavtsev, Y. V.: Effect of Cross-Linking on the Structure and Growth of Polymer Films Prepared by Interfacial Polymerization. Langmuir 31 (44), pp. 12279 - 12290 (2015)
Berezkin, A. V.; Kudryavtsev, Y. V.: Linear interfacial polymerization: Theory and simulations with dissipative particle dynamics. The Journal of Chemical Physics 141 (19), 194906 (2014)
Berezkin, A. V.; Kudryavtsev, Y. V.: Hybrid approach combining dissipative particle dynamics and finite-difference diffusion model: Simulation of reactive polymer coupling and interfacial polymerization. The Journal of Chemical Physics 139 (15), 154102 (2013)
Berezkin, A. V.; Kudryavtsev, Y. V.: End-coupling reactions in incompatible polymer blends: From droplets to complex micelles through interfacial instability. Macromolecules 46 (12), pp. 5080 - 5089 (2013)
Auer, A. A.; Richter, A.; Berezkin, A. V.; Guseva, D. V.; Spange, S.: Theoretical study of twin polymerization – From chemical reactivity to structure formation. Macromolecular Theory Simulations 21 (9), pp. 615 - 628 (2012)
Berezkin, A. V.; Biedermann, P. U.: Multiscale simulation of polyurethane network. World Polymer Congress 2012, Blacksburg, Virginia Tech, USA, June 24, 2012 - June 29, 2012. (2012)
Berezkin, A. V.; Biedermann, P. U.; Auer, A. A.: Mesoscale simulation of network formation and structure, combining molecular dynamics and kinetic Monte Carlo approaches. European Polymer Congress 2011, Granada, Spain, June 26, 2011 - July 01, 2011. (2011)
Berezkin, A. V.; Biedermann, P. U.; Auer, A. A.: Mesoscale simulation of network formation and structure, combining molecular dynamics and kinetic Monte Carlo approaches. European Polymer Congress 2011, Granada, Spain (2011)
Berezkin, A. V.; Biedermann, P. U.: Simulation of polyurethane and water interac-tions with the ZnO surface: DFT and classical OPLS-AA force field calculation. 4-th World Congress on Adhesion and Related Phenomena, Arcachon, France 2010 (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…