Nazarov, R.; Hickel, T.; Neugebauer, J.: Influence of alloying elements on solubility and diffusivity of H in different steel phases. HYDRAMYCROS Workshop, Ghent, Belgium (2012)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: Towards an ab-initio based understanding of H-embrittlement: An atomistic study of the HELP mechanism. Joint Hydrogenius and ICNER International Workshop on Hydrogen-Materials Interactions, Kyushu, Japan (2012)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: The dangling-bond defect in amorphous silicon: Insights from ab initio calculations of EPR parameters. 1st Austrian-German workshop on computational materials design, Kramsach, Austria (2012)
Aydin, U.; Hickel, T.; Neugebauer, J.: Solution enthalpy of hydrogen in 3d transition metals and neighboring elements. 1st Austrian/German Workshop on Computational Materials Design, Kramsach, Austria (2012)
Bleskov, I.; Hickel, T.; Neugebauer, J.: Ab initio investigation of the stacking fault in Fe-based alloys. 1st Austrian-German workshop on Computational Materials Design, Kramsach, Austria (2012)
Izanlou, A.; Todorova, M.; Friák, M.; Neugebauer, J.: Ab initio study of stability of Fe3Al surfaces in contact with an oxygen atmosphere. 1st Austrian/German Workshop on Computational Materials Design, Kramsach, Austria (2012)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Point-defect energetics from LDA, PBE, and HSE: Different functionals, different energetics? 1.st Austrian/German Workshop on Computational Materials Design, Kramsach, Tyrol, Austria (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.