Mianroodi, J. R.; Shanthraj, P.; Svendsen, B.: Strongly versus weakly non-local dislocation transport and pile-up. 24th International Congress of Theoretical and Applied Mechanics, Montreal, Canada (2016)
Reese, S.; Kochmann, J.; Mianroodi, J. R.; Wulfinghoff, S.; Svendsen, B.: Two-scale FE-FFT phase-field-based computational modeling of bulk microstructural evolution and nanolaminates. 12th World Congress on Computational Mechanics, Seoul, South Korea (2016)
Mianroodi, J. R.; Shanthraj, P.; Svendsen, B.: Comparison of algorithms and solution methods for classic and phase-field-based periodic inhomogeneous elastostatics. ECCOMAS Congress 2016, Crete, Greece (2016)
Svendsen, B.; Mianroodi, J. R.: Atomistic and phase-field modelling of nanoscopic dislocation processes. Dislocation based Plasticity, Kloster Schöntal, Schöntal, Germany (2016)
Mianroodi, J. R.; Svendsen, B.: Periodic molecular dynamics modeling of dislocation-stacking fault interaction. GDRi CNRS MECANO General Meeting on the Mechanics of Nano-Objects, MPIE, Düsseldorf, Germany (2013)
Mianroodi, J. R.; Svendsen, B.: Molecular Dynamics-Based Modeling of Dislocation-Stacking Fault Interaction. 84th Annual Meeting of International Association of Applied Mathematics and Mechanics (GAMM), Novi Sad, Serbia (2013)
Mianroodi, J. R.; Svendsen, B.: Modeling and calculation of the stacking fault free energy of iron at high temperature. International Workshop Molecular Modeling and Simulation: Natural Science meets Engineering, Frankfurt a. M., Germany (2013)
Mianroodi, J. R.; Shanthraj, P.; Svendsen, B.: Comparison of Methods for Discontinuous and Smooth Inhomogeneous Elastostatics. 24th International Congress of Theoretical and Applied Mechanics, Montreal, Canada (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work.
In this project we study the development of a maraging steel alloy consisting of Fe, Ni and Al, that shows pronounced response to the intrinsic heat treatment imposed during Laser Additive Manufacturing (LAM). Without any further heat treatment, it was possible to produce a maraging steel that is intrinsically precipitation strengthened by an…