Jenko, D.; Palm, M.: Transmission electron microscopy of the Fe–Al–Ti–B alloys with additions of Mo. 19th International Microscopy Congress (IMC19), Sidney, Australia (2018)
Prokopčáková, P.; Švec, M.; Lotfian, S.; Palm, M.: Microstructure – property relationships of iron aluminides. 64. Metallkunde-Kolloquium Montanuniversität Leoben, Lech am Arlberg, Austria (2018)
Peng, J.; Moszner, F.; Vogel, D.; Palm, M.: Influence of the Al content on the aqueous corrosion resistance of binary Fe–Al alloys in H2SO4. Intermetallics 2017, Educational Center Kloster Banz, Bad Staffelstein, Germany (2017)
Peng, J.; Vogel, D.; Palm, M.: Influence of the Al content on the corrosion resistance of binary Fe–Al alloys in H2SO4. EUROMAT 2017 – European Congress and Exhibition on Advanced Materials and Processes, Thessaloniki, Greece (2017)
Palm, M.: Development and processing of advanced iron aluminide alloys for application at high temperatures. 62. Metallkunde Kolloquium
, Lech am Arlberg, Austria (2016)
Marx, V. M.; Palm, M.: The wet and hot corrosion behavior of iron aluminides. THERMEC 2016 – Int. Conf. on Processing & Manufacturing of Advanced Materials
, Graz, Austria (2016)
Palm, M.: Iron aluminides: From alloy development to processing. The Materials Chain from Discovery to Production (contributed talk), Bochum, Germany (2016)
Hasemann, G.; Gang, F.; Palm, M.; Bogomol, I.; Krüger , M.: Determining the ternary eutectic alloy composition on the Mo-rich side of the Mo–Si–B system. Advances in Materials & Processing Technologies – AMPT 2015, Madrid, Spain (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.