Milenkovic, S.; Frommeyer, G.; Schneider, A.: Mechanical Behaviour of the NiAl-W Eutectic Alloys. EUROMAT 2007, European Congress and Exhibition an Advanced Materials and Processes, Nürnberg, Germany (2007)
Eleno, L. T. F.; Frisk, K.; Schneider, A.: Assessment of the Fe-Ni-Al system. 3rd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann, Germany (2006)
Krein, R.; Schneider, A.; Sauthoff, G.; Frommeyer, G.: Structure and properties of Fe3Al-based alloys with strengthening boride precipitates. 3rd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann, Germany (2006)
Milenković, S.; Palm, M.; Frommeyer, G.; Schneider, A.: Microstructure and mechanical properties of Fe–Al–Nb eutectic alloys. 3rd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann, Germany (2006)
Schneider, A.; Zhang, J.: Metal Dusting of iron aluminium alloys. 3rd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann, Germany (2006)
Eleno, L. T. F.; Schneider, A.; Inden, G.: Experimental determination and thermodynamic modelling of Fe-based high-melting alloys. Calphad XXXIV, Maastricht / The Netherlands (2005)
Schneider, A.; Stallybrass, C.; Sauthoff, G.; Cerezo, A.; Smith, G. D. W.: Three-dimensional atom probe studies of phase transformations in Fe–Al–Ni–Cr alloys with B2-ordered NiAl precipitates. 49th International Field Emission Symposium (IFES 04), Graz, Austria (2004)
Hassel, A. W.; Schneider, A.: Preparation of Nanodiscelectrode Arrays through Directional Solidification. 7th International Conference on Nanostructured Materials, Wiesbaden, Deutschland (2004)
Schneider, A.; Zhang, J.; Inden, G.: Metal dusting of Fe3Al-based alloys. Annual Meeting 2003, Symposium: International Symposium on Intermetallics and Advanced Metallic Materials, San Diego, CA, USA (2003)
Grabke, H.-J.; Müller-Lorenz, E. M.; Schneider, A.: Carburization and metal dusting on iron. IRON STEEL INST JAPAN KEIDANREN KAIKAN, 9-4 OTEMACHI 1-CHOME CHIYODA-KU, Tokyo, 100, Japan (2001), S1-S8 pp.
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.