Smith, A. J.; Milenkovic, S.; Hassel, A. W.: Directionally Solidfied Nanostructured Materials: Properties and Applications. International Bunsen Discussion Meeting: Modern electrochemistry of new materials, Rathen, Germany (2006)
Smith, A. J.; Milenkovic, S.; Hassel, A. W.: Metallic Nanoarrays for application in Nanoelectronics and Nanosensor Technology. 4th Spring meeting of the International Society of Electrochemistry, Singapur, Singapur (2006)
Hassel, A. W.; Bello Rodriguez, B.; Milenkovic, S.; Schneider, A.: Directionally solidified eutectics as a route for the formation of self organised nanostructures. 56rd Meeting of the International Society of Electrochemistry, Busan, South Korea (2005)
Bello Rodriguez, B.; Milenkovic, S.; Hassel, A. W.; Schneider, A.: Formation of self-organised nanostructures from directionally solidified eutectic alloys. 12th International Symposium on Metastable and nano Materials (ISMANAM), Paris, France (2005)
Hassel, A. W.; Milenkovic, S.; Schneider, A.: Preparation of One-Dimensionally Structured Electrode Materials by Directional Solidification. 207th Meeting of The Electrochemical Society, Québec City, Canada (2005)
Milenkovic, S.; Frankel, D.; Smith, A. J.; Hassel, A. W.: Selective Phase Dissolution of NiAl-Mo Directionally Solidified Eutectic Alloys. 7th International Symposium on Electrochemical Micro- and Nanosystems, Ein-Gedi, Israel (2008)
Milenkovic, S.; Frommeyer, G.; Schneider, A.: Mechanical Behaviour of the NiAl-W Eutectic Alloys. EUROMAT 2007, European Congress and Exhibition an Advanced Materials and Processes, Nürnberg, Germany (2007)
Milenkovic, S.; Hassel, A. W.: A combined method for the production of self-organised metallic nano-structures. 6th International Symposium on Electrochemical Micro & Nanosystem Technologies, Bonn, Germany (2006)
Milenković, S.; Palm, M.; Frommeyer, G.; Schneider, A.: Microstructure and mechanical properties of Fe–Al–Nb eutectic alloys. 3rd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann, Germany (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…