Nematollahi, A.; von Pezold, J.; Neugebauer, J.; Raabe, D.: Thermodynamics of the strain-induced dissolution of cementite in pearlitic structure steel: An ab-initio study. 1st Austrian-German workshop on Computational Materials Design, Kramsach, Austria (2012)
Nematollahi, A.; von Pezold, J.; Neugebauer, J.; Raabe, D.: Thermodynamic and kinetic effects of elastic strain on the decomposition of cementite in wire-draw pearlitic steel. International scientific seminar: Ab-initio description of iron and steel thermodynamics and kinetics, Ringberg Castle, Tegernsee, Germany (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…