Eisenlohr, P.: Einheitliche Beschreibung dynamischer und statischer Erholung von Stufenversetzungen mittels Dipolweitenverteilungen. Seminar of the Institute of Materials Physics, University of Vienna, Vienna, Austria (2003)
Reuber, J. C.; Eisenlohr, P.; Roters, F.: Boundary Layer Formation in Continuum Dislocation Dynamics. Dislocations 2016, Purdue University, West Lafayette, IN, USA (2016)
Shanthraj, P.; Diehl, M.; Eisenlohr, P.; Roters, F.: Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. Materials to Innovate Industry and Society, Noordwijkerhout, The Netherlands (2013)
Diehl, M.; Eisenlohr, P.; Roters, F.; Raabe, D.: Using a "Virtual Laboratory" to Derive Mechanical Properties of Complex Microstructures. 11th GAMM-Seminar on Microstructures, Essen, Germany (2012)
Diehl, M.; Eisenlohr, P.; Roters, F.; Tasan, C. C.; Raabe, D.: Using a "Virtual Laboratory" to Derive Mechanical Properties of Complex Microstructures. Materials to Innovate Industry and Society, Noordwijkerhout, The Netherlands (2011)
Kords, C.; Eisenlohr, P.; Roters, F.: Signed dislocation densities and their spatial gradients as basis for a nonlocal crystal plasticity model. MMM 2010 Fifth International Conference Multiscale Materials Modeling, Freiburg, Germany (2010)
Kords, C.; Eisenlohr, P.; Roters, F.: A Non-Local Dislocation Density Based Constitutive Model for Crystal Plasticity. Junior Euromat 2010, Lausanne, Switzerland (2010)
Eisenlohr, P.: On the role of dislocation dipoles in unidirectional deformation of crystals. Dissertation, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we study the atomistic structure and phase transformations of tilt grain boundaries in Cu by using aberration-corrected scanning transmission electron microscope to build a relation to the transport properties of the grain boundaries via macroscopic tracer diffusion experiments. In the meantime, we address the impact of the grain…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.