Tasan, C. C.: Overcoming challenges in damage engineering: Design of reliable damage quantification methodologies and damage-resistant microstructures. TMS 2015, Orlando, FL, USA (2015)
Tasan, C. C.; Diehl, M.; Yan, D.; Raabe, D.: Coupled high-resolution experiments and crystal plasticity simulations to analyze stress and strain partitioning in multi-phase alloys. TMS2015, Orlando, FL, USA (2015)
Tasan, C. C.; Yan, D.; Raabe, D.: A novel, high-resolution approach for concurrent mapping of micro-strain and micro-structure evolution up to damage nucleation. TMS 2015, Orlando, FL, USA (2015)
Morsdorf, L.; Tasan, C. C.; Ponge, D.; Raabe, D.: Lath martensite transformation, µ-plasticity and tempering reactions: potential TEM aids. Seminar at Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (2015)
Tasan, C. C.: Doing more, with less, for longer:Designing high-performance eco-friendly materials guided by in-situ experiments and simulations. Invited Seminar at the Dept. of Mat. Sci. and Eng. of MIT, Boston, MA, USA (2015)
Tasan, C. C.: Investigating Stress - Strain Partitioning in Nanostructured Multi-phase Alloys by Coupled Experiments and Simulations. 3rd World Congress on Integrated Computational Materials Engineering, Colorado Springs, CO, USA (2015)
Tasan, C. C.: Doing more, with less, for longer: Designing high-performance eco-friendly materials guided by in-situ experiments and simulations. Invited Seminar at the Dept. of Mat. Sci. and Eng. of MIT, Boston, MA, USA (2015)
Tasan, C. C.; Morsdorf, L.: In-situ characterization of martensite plasticity by high resolution microstructure and strain mapping. ICM12, Karlsruhe, Germany (2015)
Diehl, M.; Shanthraj, P.; Roters, F.; Tasan, C. C.; Raabe, D.: A Virtual Laboratory to Derive Mechanical Properties. M2i Conference "High Tech Materials: your world - our business"
, Sint Michielgestel, The Netherlands (2014)
We have studied a nanocrystalline AlCrCuFeNiZn high-entropy alloy synthesized by ball milling followed by hot compaction at 600°C for 15 min at 650 MPa. X-ray diffraction reveals that the mechanically alloyed powder consists of a solid-solution body-centered cubic (bcc) matrix containing 12 vol.% face-centered cubic (fcc) phase. After hot compaction, it consists of 60 vol.% bcc and 40 vol.% fcc. Composition analysis by atom probe tomography shows that the material is not a homogeneous fcc–bcc solid solution
Magnetic properties of magnetocaloric materials is of utmost importance for their functional applications. In this project, we study the magnetic properties of different materials with the final goal to discover new magnetocaloric materials more suited for practical applications.
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…