Biedermann, P. U.: Intermediates of the Electrochemical Oxygen Reduction in Aqueous Media. ICAMS-Seminar, Interdisciplnary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, Germany (2010)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical Investigation of Electrode Surface Potential Mapping with Scanning Electrochemical Potential Microscopy. The 12th International Scanning Probe Microscopy Conference, Sapporo, Japan (2010)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical simulation of probing the electric double layer by scanning electrochemical Potential microscopy. 217th ECS Meeting, Vancouver, Canada (2010)
Biedermann, P. U.: Electrochemical Oxygen Reduction in Aqueous Solution, A DFT Study of the Intermediates. NACE Corrosion 2010, San Antonio, TX, USA (2010)
Biedermann, P. U.: Theoretical Investigation of the Electrochemical Oxygen Reduction Mechanism. Minisymposium "Perspectives in Quantum chemistry for Electrochemistry", Ruhr-Universität Bochum, Germany (2010)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical simulation of probing the electric double layer by scanning electrochemical potential microscopy. International Workshops on Surface Modification for Chemical and Biochemical Sensing, Przegorzaly, Poland (2009)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Screening effects in probing the double layer by scanning electrochemical potential microscopy. Comsol European Conference October 2009, Milan, Italy (2009)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Simulation of probing the electric double layer by scanning electrochemical potential microscopy (SECPM). 11th International Fischer Symposium on Microscopy in Electrochemistry, Benediktbeuern, Germany (2009)
Hamou, R. F.; Biedermann, P. U.; Blumenau, A. T.: FEM Simulation of the Scanning Electrochemical Potential Microscopy (SECPM). SurMat Seminar, Schloß Gnadenthal, Kleve, Germany (2008)
Torres, E.; Biedermann, P. U.; Blumenau, A. T.: High density structures of ethyl-thiol SAM´s on Au(111): A DFT study. SurMat Seminar, Schloß Gnadenthal, Kleve, Germany (2008)
Torres, E.; Biedermann, P. U.; Blumenau, A. T.: The Role of Gold Adatoms in Self-Assembled Monolayers of Thiol on Au(111). 6th Congress of the International Society for Theoretical Chemical Physics, ISTCP-VI, University of British Columbia, Vancouver, Canada (2008)
Biedermann, P. U.; Blumenau, A. T.: Ab-Initio Calculation of the Standard Hydrogen Electrode Potential and Application to the Mechanism of the Oxygen Reduction. Workshop on Converging Theoretical and Experimental Approaches to Corrosion, MPIE, Düsseldorf, Germany (2007)
Blumenau, A. T.; Biedermann, P. U.; Torres, E.: Modelling adhesion and delamination at oxide/polymer interfaces. Multiscale Material Modeling of Condensed Matter, MMM2007, St. Feliu de Guixols, Spain (2007)
Biedermann, P. U.; Torres, E.; Blumenau, A. T.: Oxygen Reduction at Thiol/Au(111)SAMs, Atomistic Modelling and Experiment. 212th ECS Meeting, Washington, D.C., USA (2007)
We have studied a nanocrystalline AlCrCuFeNiZn high-entropy alloy synthesized by ball milling followed by hot compaction at 600°C for 15 min at 650 MPa. X-ray diffraction reveals that the mechanically alloyed powder consists of a solid-solution body-centered cubic (bcc) matrix containing 12 vol.% face-centered cubic (fcc) phase. After hot compaction, it consists of 60 vol.% bcc and 40 vol.% fcc. Composition analysis by atom probe tomography shows that the material is not a homogeneous fcc–bcc solid solution
Magnetic properties of magnetocaloric materials is of utmost importance for their functional applications. In this project, we study the magnetic properties of different materials with the final goal to discover new magnetocaloric materials more suited for practical applications.
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…