Schwarz, T.; Hsu, Y.-L.; Dumont, M.; Garcia-Giner, V.; Jung, C.; Porter, A.; Gault, B.: Atom Probe Tomography - a new approach to provide new insights into the interfacial reaction at the liquid-solid interface on the atomic scale. Institute Seminar FAU Erlangen-Nuremberg, Department of Materials Science, Erlangen-Nuremberg, Germany (2025)
Schwarz, T.: Improvement in data quality of biominerals by in-situ metallic coating of APT specimens. Atom Probe Tomography & Microscopy (APT&M) 2025, Chennai, India (2025)
Schwarz, T.: Atom Probe Tomography - the ability to analyse materials with 3D compositional mapping at near atomic resolution. Seminar Frauenhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Dresden, Germany (2025)
Schwarz, T.: Atom probe tomography - a new approach to understand corrosion mechanisms at liquid-solid interface on the near-atomic scale. Institute for Bulidng Materials Seminar, ETH Zurich, Zurich, Switzerland (2025)
Schwarz, T.; Hsu, Y.-L.; Dumont, M.; Garcia-Giner, V.; Jung, C.; Porter, A.; Gault, B.: Atom probe tomography – a new technique to understand biominerals/materials on the atomic scale. 8th BioMAT 2025 - Symposium on Biomaterials and Related Areas, Weimar, Germany (2025)
Schwarz, T.: Cryo-APT opens up new possibilities in materials analysis. From the atom to the bulk: Materials characterization with CAMECA, Gatan, and EDAX user-day, Weiterstadt, Germany (2025)
Woods, E.; Aota, L. S.; Schwarz, T.; Kim, S.-H.; Douglas, J. O.; Singh, M. P.; Gault, B.: In-situ cryogenic protective layers and metal coatings in cryogenic FIB. IMC20 - 20th International Microscopy Congress - Pre-congress workshop, Cryogenic Atom Probe Tomography, Busan, South Korea (2023)
Schwarz, T.: Atom probe tomography: from water to complex liquids to the application of studying liquid-solid interfaces at the near atomic level. APT&M 23, Leuven, Belgium (2023)
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.