Calcagnotto, M.; Ponge, D.; Adachi, Y.; Raabe, D.: Effect of grain refinement to 1 µm on deformation and fracture mechanisms in ferrite/martensite dual-phase steels. 2nd International Conference on Super-High Strength Steels SHSS, Peschiera del Garda, Italy (2010)
Dmitrieva, O.; Choi, P.; Ponge, D.; Raabe, D.; Gerstl, S. S. A.: Laser-pulsed atom probe studies of a complex maraging steel: Laser pulse energy variation and precipitate analysis. 52nd International Field Emission Symposium IFES 2010, Sydney, Australia (2010)
Ponge, D.; Raabe, D.: Nano-particles and filaments in steels: From understanding to materials design. 52nd International Field Emission Symposium IFES 2010, Sydney, Australia (2010)
Herrera, C.; Ponge, D.; Raabe, D.: Development of a high ductile lean duplex stainless steel. 2nd International Conference on Super-High Strength Steels SHSS, Peschiera del Garda, Italy (2009)
Calcagnotto, M.; Ponge, D.; Raabe, D.: Effect of grain refinement to 1µm on the mechanical properties of dual-phase steels. European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2009), Glasgow, UK (2009)
Herrera, C.; Ponge, D.; Raabe, D.: Hot workability of 1.4362 duplex stainless steel. Euromat 2009 (European Congress and Exhibition on Advanced Materials and Processes), Glasgow, Scotland, UK (2009)
Calcagnotto, M.; Ponge, D.; Demir, E.; Raabe, D.; Zaefferer, S.: 3D-EBSD Investigation on Orientation Gradients and Geometrically Necessary Dislocations Induced by the Martensitic Phase Transformation in Ultrafine Grained Dual-Phase Steels. Interdisciplinary Symposium on 3D Microscopy, Interlaken, Switzerland (2009)
Calcagnotto, M.; Ponge, D.; Raabe, D.: Mechanical properties of ultrafine and fine grained dual phase steels. MS&T 2008 (Materials Science and Technology), Pittsburgh, PA, USA (2008)
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
Multiple Exciton Generation (MEG) is a promising pathway towards surpassing the Shockley-Queisser limit in solar energy conversion efficiency, where an incoming photon creates a high energy exciton, which then decays into multiple excitons.