Bajaj, P.; Hariharan, A.; Kini, A.; Kürnsteiner, P.; Raabe, D.; Jägle, E. A.: Steels in additive manufacturing: A review of their microstructure and properties. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 772, 138633 (2020)
Massey, C. P.; Hoelzer, D. T.; Edmondson, P. D.; Seibert, R. L.; Kini, A.; Gault, B.; Terrani, K. A.; Zinkle, S. J.: OFrac: An advanced nanostructured ferritic alloy fuel cladding for fast reactors. AISTech 2018 Iron and Steel Technology Conference and Exposition, Pennsylvania Convention Center, Philadelphia, PA, USA, May 07, 2018 - May 10, 2018. AISTech - Iron and Steel Technology Conference Proceedings 2018-May, pp. 1433 - 1435 (2018)
Massey, C. P.; Hoelzer, D. T.; Edmondson, P. D.; Seibert, R. L.; Kini, A.; Gault, B.; Terrani, K. A.; Zinkle, S. J.: Ofrac: An advanced nanostructured ferritic alloy fuel cladding for fast reactors. 2018 Transactions of the American Nuclear Society, ANS 2018 and Embedded Topical Meeting Nuclear Fuels and Structural Materials, Marriott Philadelphia Downtown, Philadelphia, PA; USA, June 17, 2018 - June 21, 2018. Transactions of the American Nuclear Society 118, pp. 1433 - 1435 (2018)
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project, we aim to realize an optimal balance among the strength, ductility and soft magnetic properties in soft-magnetic high-entropy alloys. To this end, we introduce a high-volume fraction of coherent and ordered nanoprecipitates into the high-entropy alloy matrix. The good combination of strength and ductility derives from massive solid…
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.