Pérez Escobar, D.; Duprez, L.; Verbeken, K.; Verhaege, M.: Study of the hydrogen traps in a high strength TRIP steel by Thermal Desorption Spectroscopy. Materials Science Forum 706-709, pp. 2253 - 2258 (2012)
Pérez Escobar, D.; Verbeken, K.; Duprez, L.; Verhaege, M.: On the methodology of Thermal Desorption Spectroscopy to evaluate hydrogen embrittlement. Materials Science Forum 706-709, pp. 2354 - 2359 (2012)
Verbeken, K.; Vervynckt, S.; Thibaux, P.; Houbaert, Y.: Empirical relationships for the impact of Nb and C content on the mechanical properties of hot rolled microalloyed steels. Materials Science Forum 706-709, pp. 37 - 42 (2012)
Vervynckt, S.; Thibaux, P.; Verbeken, K.: Effect of recrystallization controlled rolling on the microstructure and mechanical properties of hot rolled niobium microalloyed steels. Metals and Materials International 18, pp. 37 - 46 (2012)
Danzo, I.; Verbeken, K.; Houbaert, Y.: Characterization of the Intermetallic Compounds Formed during Hot Dipping of Electrical Steel in a Hypo-Eutectic Al–Si Bath. Defect and Diffusion Forum 297 - 301, pp. 370 - 375 (2010)
De Clercq, J.; Van de Steene, E.; Verbeken, K.; Verhaege, M.: Electrochemical oxidation of 1,4-dioxane at boron-doped diamond electrode. Journal of Chemical Technology & Biotechnology 88 (8), pp. 1162 - 1167 (2010)
De Muynck, W.; Verbeken, K.; De Belie, N.; Verstraete, W.: Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. BioGeoCivil Engineering, pp. 99 - 111 (2010)
Gomes, E.; Schneider, J.; Verbeken, K.; Hermann, H.; Houbaert, Y.: Effect of hot and cold rolling on grain size and texture in Fe–Si strips with Si-content larger than 2 wt%. Materials Science Forum 638-642, pp. 3561 - 3566 (2010)
Gomes, E.; Schneider, J.; Verbeken, K.; Pasquarella, G.; Houbaert, Y.: Dimensional effects on magnetic properties of Fe–Si steels due to laser and mechanical cutting. IEEE Transactions on Magnetics 46 (2), pp. 213 - 216 (2010)
Hennebel, T.; De Corte, S.; Vanhaecke, L.; Vanherck, K.; Forrez, I.; De Gusseme, B.; Verhagen, P.; Verbeken, K.; Van der Bruggen, B.; Vankelecom, I.et al.; Boon, N.; Verstraete, W.: Removal of diatrizoate with catalytically active membranes incorporating microbially produced palladium nanoparticles. Water Research 44 (5), pp. 1498 - 1506 (2010)
Petrov, R.; Verbeken, K.; Bouquerel, J.; Verleysen, P.; Kestens, L.; Houbaert, Y.: OIM analysis of microstructure and texture of a TRIP assisted steel after static and dynamic deformation. Materials Science Forum 638-642, pp. 3447 - 3452 (2010)
Verbeken, K.; Gomes, E.; Schneider, J.; Houbaert, Y.: Correlation between the magnetic properties and the crystallographic texture during the processing of non oriented electrical steel. Solid State Phenomena 160, pp. 189 - 194 (2010)
Vervynck, S.; Verbeken, K.; Thibaux, P.; Houbaert, Y.: Characterization of the austenite recrystallization by comparing double deformation and stress relaxation tests. Steel Research International 81 (3), pp. 234 - 244 (2010)
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
We have studied a nanocrystalline AlCrCuFeNiZn high-entropy alloy synthesized by ball milling followed by hot compaction at 600°C for 15 min at 650 MPa. X-ray diffraction reveals that the mechanically alloyed powder consists of a solid-solution body-centered cubic (bcc) matrix containing 12 vol.% face-centered cubic (fcc) phase. After hot compaction, it consists of 60 vol.% bcc and 40 vol.% fcc. Composition analysis by atom probe tomography shows that the material is not a homogeneous fcc–bcc solid solution
Magnetic properties of magnetocaloric materials is of utmost importance for their functional applications. In this project, we study the magnetic properties of different materials with the final goal to discover new magnetocaloric materials more suited for practical applications.
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
In this project we pursue recent developments in the field of austenitic steels with up to 18% reduced mass density. The alloys are based on the Fe-Mn-Al-C system.
Local lattice distortion is one of the core effects in complex concentrated alloys (CCAs). It has been expected that the strength CCAs can be improved by inducing larger local lattice distortions. In collaboration with experimentalists, we demonstrated that VCoNi has larger local lattice distortions and indeed has much better strength than the…